Reference s sl
TRS-80
Manual MICRO
COMVIPUTER
SYSTEM
Contents
1. General Information
2. Mini Disk Operation
3. TRSDOS Overview
4. TRSDOS Commands
5. Extended Utilities
6. TRSDOS Technical Information
7. DISKBASIC
8. Appendices
Index

CUSTOM MANUFACTURED IN THE USA FOR RADIO SHACK g A DIVISION OF TANDY CORPORATION

TRSDOS &
DISK BASIC

Reference
Manual

For the Radio Shack TRS-80
Disk Operating System
TRSDOS Version 2.1

DISK BASIC Version 1.1

5ad|o Jhaek

A DIVISION OF TANDY CORPORATION

One Tandy Center
Fort Worth, Texas 76102

First Edition — 1979

All rights reserved. Reproduction or use, without express
permission, of editorial or pictorial content, in any man-
ner, is prohibited. No patent liability is assumed with
respect to the use of the information contained herein.
While every precaution has been taken in the preparation
of this book, the publisher assumes no responsibility for
errors or omissions. Neither is any liability assumed for
damages resulting from the use of the information con-
tained herein.

© Copyright 1979, Radio Shack

A Division of Tandy Corporation,
Fort Worth, Texas 76102, U.S.A.

Software Copyright Notice

All TRSDOS and DISK BASIC software is copyrighted by
Radio Shack. Radio Shack grants each TRSDOS user the

privilege of making BACKUP diskettes of TRSDOS and
DISK BASIC, provided such diskettes are solely for per-
sonal use.

Any other duplication of TRSDOS or DISK BASIC soft-
ware, in whole or in part, in print or in any other storage-
and-retrieval system, is forbidden.

Printed in the United States of America

To Our Customers

This is a reference manual, and its organization reflects the relationship between
TRSDOS and DISK BASIC. TRSDOS is the fundamental software, so it’s described
first. DISK BASIC is a language supported by TRSDOS, so it’s described after
TRSDOS. (If other languages are supported later, they’ll plug right in to this manual
along with DISK BASIC.)

But don’t think you have to read the manual in strict sequence. If you're an old hand at
LEVEL Il BASIC and you want to start out with DISK BASIC, go ahead and skip to
Section 7. You can refer back to the TRSDOS sections later on when you're ready or
when you need them.

We hope you enjoy exploring this powerful new computer system!

How to Use This Boock

Read

Seetions 142 ' Read and use
ecrions

Sections 3-3

YES

—

Skim
Sections 3¢ 4

Read and use
Section 7

General
Information

Contents of This Section

Introduction2
Notation Conventions3
VersionsandReleases6

Section 1 - Page 1

General Information

Introduction

This book is a combined operation and reference manual for the
TRS-80 Disk Operating System. It will tell you how to operate the
hardware and how to use the software.

For many of you, there will be more than enough information. (‘‘All
I want to do is use the Computer, not understand it!”’) Don’t worry,
this book is designed so that you can start programming in DISK
BASIC (if that’s what you want to do) right away. All you have to do
is read the chapter on Mini Disk Operation . . . skim through TRSDOS
Overview and TRSDOS Commands . . . and on to DISK BASIC.

But DISK BASIC is just one aspect of TRSDOS. It’s not a

part of TRSDOS, but a program that TRSDOS executes. Using

DISK BASIC without any awareness of the capabilities of TRSDOS

is rather like riding in a Pullman car without any knowledge of the
engine, freight cars, diner and other parts of a train. It’s true that
TRSDOS will do all that’s necessary to let you ride comfortably along
in BASIC; but eventually you’re going to want to have a say in where
the train goes, what its schedule is, and what goes in all those freight
cars. That’s when you need to understand TRSDOS.

The illustration below shows the relationship between the Computer,
Expansion Interface and Mini Disk Drives.

The first drive(Drive 0) always contains the TRSDOS
diskette, which is pre-recorded with the Operating System
software: an executive program, and several auxiliary
programs, including DISK BASIC. The executive program
is loaded into the first 4K bytes of RAM, and stays there
while TRSDOS is in control. The auxiliary programs

are loaded as needed.

LT

TN
° 3

Second, third and fourth drives can contain data
diskettes, for storing your programs and data.

The Expansion Interface contains the real-
time clock, disk controller IC, and optional
extra RAM (addresses above 32767).

The Keyboard/Computer contains a built-in (ROM) J
program which takes over at power-up, and loads

the TRSDOS executive program from the system

diskette (in Drive 0). If the Mini Disk equipment is

not connected, this ROM program can transfer control

to LEVEL 11 BASIC.

1-2

General Information
o]

One section of this book you should definitely become familiar with
is the Glossary. We’ve tried to give definitions for all the “computer
words” and everyday words with special meanings in this book. Even
if you’ve heard all the terms, you’ll gain some useful information
from the Glossary, because it’s customized for the TRS-80.

First you make a BACKUP. . .

You received one TRSDOS diskette with your Mini Disk drive 26-1160.
This diskette contains the operating system software. Without this
disk, you haven’t got a disk operating system.

So, your first disk operation . . . before you remove the write protect
tape from the TRSDOS diskette . . . should be to duplicate TRSDOS
onto a blank diskette. You’ll find abbreviated instructions for making
a duplicate (BACKUP) of your TRSDOS diskette at the end of the
Mini Disk Operation chapter.

Notation Conventions

In descriptions of syntax for commands, statements and dialog with
the Computer, we’ll use the following conventions for clarity and
brevity.

) This special symbol represents a mandatory
blank space. Unless it is specified, any
blanks that appear in the syntax are optional.
Example:
DIRB®: 1
The blank space is required after the R.

ENTER “Press the A3 key.”

< SPACE> “Press the space-bar.”
CAPITALS and Indicate material which must be entered
punctuation exactly as it appears. The only punctuation

symbols not entered are the special cases
(brackets and triple-period . . .) explained
below.

Example:

LOADfilespec”

Only the command LOAD and the quote
marks are entered verbatim; you supply
the filespec.

1-3

General Information
-]

Notation, continued

[ED CAPITALS Represent input you supply, upon prompt-
ing from the Computer. This convention
will only be used where necessary to
distinguish between Computer prompting
and user input.

Example:

HOW MANY FILES: 5 EYHER

The Computer asks the question, and you
answer it.

lowercase italics Represent words, letters or values you
supply from a set of acceptable values for
that situation.
Example:
var = exp
A variable name goes on the left, and an
expression goes on the right.

[] Brackets enclose optional material.
Example:
CLOSE][filenum]
filenum (the file number) is optional after
CLOSE. The brackets are not actually
typed in.

The triple-period symbol inside brackets
indicates that preceding items in the
brackets may be repeated.

Example:

INPUT[“prompting message’ ;| var|[,var . . .]
The INPUT variable-list may include

more than one variable. The periods are
not actually typed in.

var([,...]) Signifies an array. If no commas are
placed inside the parentheses, a
one-dimensional array is intended;
1 comma indicates a two-dimensional
string array; etc.
Examples:
AS(,) indicates a two-dimensional
string array.
B1() indicates a single-dimensioned
array.

14

General Information

Notation, continued

exp
var

nmexp

nmvar

exp$

var$
con
nmcon

cond

numerical
suffixes

String or numerical expression
String or numerical variable name

Numerical expression, including constants,
variables, functions

Numerical variable name

String expression, including constants in
quotes, variables, functions and operators

String variable name

Constant, either string or numerical
Numerical constant

String constant

Attached to distinguish between different
arguments and parameters of the same type.
Example:

COPYfilespecl YTOWfilespec?2

1-5

General Information

Versions and Releases

Some of you may be a little confused about the terminology,
“Version X.Y”. The “X” and “Y” will change as TRSDOS is
updated, so here’s an explanation.

A new version represents a substantial expansion of the previous
version. For example, new utilities, high-level languages, etc., might
be included in a new version. Such versions are numbered by the
integers 1, 2, 3,

A new release, on the other hand, is simply an update of the previous
release of a given version. This later release generally includes wider
implementations and enhancements of commands and fixes for any
problems in the earlier release. The releases are numbered by
decimal fractions, .1, .2, .3,

Therefore, when we refer to Version 2.1, that’s short for the first
Release of Version 2.

Note: In its original printing, this Manual describes TRSDOS

Version 2.1, and DISK BASIC Version 1.1. The Manual will be
updated as required by later versions and releases.

1-6

Mini Disk
Operation

Contents of This Section

Introduction
Connection
Operation
Care of Diskettes .
Specifications ...
Schematics

Making a TRSDOS B

ACKUP ...

Section 2 - Page 1
e el e e e R
T B e R B B P T S B

o wmN

mI>SOB/P>I

Mini Disk Operation

Introduction

The TRS-80 Mini Disk drive is a mass storage device custom
manufactured for use with the TRS-80 Microcomputer. It combines
the compactness of a cassette recorder with the high-speed, reliable
data access of the larger disk drive units. Information is magnetically
recorded on and read from flexible (“floppy”) diskettes.

In simplified terms, the Mini Disk consists of a magnetic read/write
head, similar to that on a tape recorder; a stepper motor to move the
head across the diskette surface; a drive motor and hub assembly to
rotate the diskette; and the necessary logic circuitry to control

the read/write process and the motor speed. See Figures 1 and 2.

There are two types of drives,
distinguished by their Radio
Shack Catalog Numbers,
26-1160 and 26-1161. Your
disk system must include one
(and only one) 26-1160 and
may include up to three
26-1161 drives.

Included with 26-1160

Drive unit: Incorporates
special terminating resistors
not present in the 26-1161
units.

Interconnect cable: For con-
nection of 26-1160 and up to .
three optional 26-1161 drives Figure 1. Mini Disk Drive.
to the Expansion Interface. MAGNETIC READMWRITE HEAD

WRITE PROTECT SWITCH

1 TRSDOS diskette: Contains
the operating system software,
utilities, DISK BASIC, etc.

DISK CONTROLLER INDEX SECTOR LED

Included with each 26-1161

X / STEPPER MOTOR
x,

INDEX/SECTOR

DETECTOR

Drive unit: Does not incorpo-
rate terminating resistors.

MAGNETIC
READ/WRITE HEAD

DRIVE MOTOR

/
N,
3 i

Blank diskette: Can be
formatted or backed up for
use with TRSDOS.

SPINDLE HUB ASSEMBLY

Figure 2. Functional components in a Mini Disk drive.

2-2

Mini Disk Operation

Connections

The power to all components in the TRS-80 system should be ‘‘off”
while you make connections.

Look at the ribbon-type connector cable included with your 26-1160
Mini Disk drive. Notice that the cable has four edge card connectors
through its length, and a single connector at the other end. Connect
the single plug to the edge-card jack on the left rear of the

Expansion Interface, as shown in Figure 3. Be sure the plug is
oriented so the cable exits from the bottom.

Before connecting the Drive(s) to the cable, note the following rules:

1) 26-1160 must always be the “terminal” or final drive on the
cable; that is, of all your drives, it must always be the farthest
away from the Expansion Interface. This is because it includes
the terminating resistors mentioned above.

2) The connector closest to the Expansion Interface must always
be plugged in to a drive. The other connectors can be
“empty”’.

LEFT REAR OF EXPANSION INTERFACE
(MINI-DISK CONNECTION)

I

CABLE MUST EXIT AT BOTTOM N
FOR PROPER CONNECTION. X

-
S

N

-

o —

/ _
RIBBON TYPE CONNECTOR CABLE

Figure 3. Connecting the ribbon cable to the Expansion Interface.

QO

&Lj

2-3

Mini Disk Operation

Connect each Mini Disk o |
unit to the cable, taking B TT R

care to orient the plug R @

properly as shown in T

Figure 4 Inside eaCh N \ TO EXPANSION INTERFACE @ @

plug is a small plastic
connector. If the plug
doesn’t mate properly,
check to see that the

CONNECTOR |

EDGE CARD .)

plug is oriented so the ;
pin lines up with the A " ’
slot. L - J
@ —
\ S
N\ —_
[< |
GUIDE PIN u \—]
Figure 4. Connecting the cable to the Mini Disk.
Examples:

If you have just one drive (must be 26-1160), then connect it to the
first connector plug, so as not to leave any empty connectors between
the Drive and the Expansion Interface. Leave the last three connectors
empty.

If you have two drives, then connect 26-1161 to the first connector
and 26-1160 to the second connector. Leave the last two connectors
empty.

'Figure 5 shows a Mini Disk system with four drives connected.

Connect each Mini Disk to a source of 120 VAC, using the power cord
provided.

26-1160 26-1161 26-1161

Figure 5. A complete four-drive Mini Disk System.
- ___ |

24

Mini Disk Operation

Drive Numbering

TRSDOS requires at least one Mini Disk drive, and can handle up to
four. Under TRSDOS, these drives are referred to as drives 0,1,2 and 3
(where drive O is closest to the Expansion Interface, and drive 3 is
farthest away). See Figure 5. These designations cannot be changed —
they are built into the ribbon cable connector.

When the Computer attempts a bootstrap operation (power-on or
reset), it will automatically attempt to load TRSDOS from drive 0.
Therefore a TRSDOS diskette must be in drive O when you power on
or reset the Computer. In fact, the TRSDOS diskette should always
remain in drive 0 while TRSDOS is in use, except in special cases.

Operation

Before powering on the disk system, you need to understand a few
things about how the drives work.

The disk drive does not rotate continuously while it is ““on”. It only
rotates when a Motor-On signal is sent from the Computer. If more
than one Mini Disks are connected, the Motor-On signal will turn them
all on and off simultaneously, even if only one of them is to be
accessed by the Computer. This signal is sent about a second before
the Computer accesses the disk, to allow the drives to reach operating
speed.

While the Computer is accessing one of the Mini Disks, the red light
(LED) on the front of that Mini Disk will remain lit.

Caution: Do not open a drive latch to insert or remove a diskette
while the drive motors are running (i.e., while one of the LEDS
is lit).

How a Diskette Works

A diskette is simply a circular plastic sheet, one side of which is
coated with a highly polished layer of ferromagnetic material. Similar
to a 45 RPM record, the diskette has a large spindle hole to
accommodate the drive hub, and a small hole which indexes the
diskette as it rotates.

2-5

Mini Disk Operation
L]

A blank diskette (either brand-new or magnetically erased) contains
no information. TRSDOS has a special utility program (called
FORMAT) which takes a blank diskette and organizes it into
concentric “‘tracks” and subtracks called “‘sectors”. See Figure 6.
These divisions are like the numbered pages in a book. (FORMAT
also places a small amount of system and bookkeeping information
onto each diskette. For more information, see Extended Utilities,
FORMAT.)

TRACK 1, SECTOR 8
DATA 256 BYTES SECTOR NUMBERS

TRACK/SECTOR ID FOR
TRACK 1, SECTOR 8

DIRECTION OF ROTATION

Figure 6. Track/sector organization on a formatted diskette.

Each diskette is permanently sealed inside its jacket to prevent
bending, creasing, scratching or contamination of the diskette
surface. When the diskette is loaded into the drive, a hub assembly
grips the diskette; when the drive motor is on, the diskette

rotates inside its jacket. The specially treated jacket lining cleans
the diskette as it rotates.

Notice that the TRSDOS diskette comes with a piece of tape across
the top (above the label). This tape covers the diskette’s write
protect notch. With the notch covered, the diskette is physically
protected from being written to. (A ‘“‘write operation” is any
alteration of the data stored on the diskette. In contrast, a “read”
does not alter the information — merely accesses it.)

Mini Disk Operation

Remove the tape from the diskette if you intend to write to it; and
place a tape over the notch on any diskette you don’t want to
accidentally write to.

See Figure 7.

LABEL \ WRITE PROTECTNO7 WRITE PROTECT TAB
[

©..L ©.
SECTOR HOLE
i 0

JACKET —

READ/WRITE NOTCH

Figure 7. A diskette; a write-protected diskette; a diskette in
protective storage envelope.

Inserting a Diskette

1. Be sure the Mini Disk drive is stopped when you insert or
remove a diskette.

2. Open the front of the Mini Disk drive. Gently insert the diskette
into the vertical slot, with the write protect notch up and the
diskette label to the right (Figure 8). Be sure not to close the
latch until the diskette is inserted all the way and seated
properly, or you may damage it.

3. Close the Mini Disk latch. This causes the spindle-hub assembly
to grip the diskette. If the door doesn’t close easily, don’t
force it. Re-insert the diskette and try again.

Figure 8. Inserting a diskette.

2-7

Mini Disk Operation

Power-Up Sequence

You should always power up the peripherals (disk drives, printer,
Expansion Interface, etc.) first, and the TRS-80 CPU/keyboard last.
Also note that turning the peripherals on and off while the Computer
is on may confuse the system and cause abnormal operation. Work
done on a currently open file may be lost.

The power switch for each Mini Disk is on the rear of the unit. Power
is “on” when the toggle switch is in the up position, and “off” when
the switch is down.

1. Turn on the Expansion Interface.

2. Turn on the Mini Disk drives: first the terminal drive, 26-1160,
then the other drives, if any.

3. When you turn on the TRS-80 CPU/keyboard, the Computer
will instantly attempt to load TRSDOS from Drive 0. -So before
turning on the CPU, carefully insert the TRSDOS diskette into
drive O as explained above under “Inserting a Diskette”. You
may also want to insert formatted diskettes into the other drives
now; however, these may be inserted any time the drives are
stopped.

Another approach would be to plug all devices into an adequate
power strip and turn them all on with a single switch.

Care of Diskettes

Diskettes are precision recording media. Handle them very carefully
to get maximum life from each diskette. In general, follow the special
handling precautions used with both tape cassettes and high fidelity
records.

1. Keep the diskette in its storage envelope whenever it is not in
one of the drives. Don’t leave the diskettes in the drives
needlessly, for example, when the system is turned off.

2. Keep diskettes away from magnetic fields (transformers, AC
motors, magnets, etc.). Strong magnetic fields will destroy
information on the diskettes.

3. Handle the diskette by the jacket only — don’t touch any of the
exposed surfaces. Don’t try to wipe or clean the diskette surface;
you might scratch it and destroy data.

4. Keep the diskette away from heat and direct sunlight. See the
“Specifications” section below for storage temperature range.

2-8

Mini Disk Operation
... |

5. Avoid contamination of the diskette with cigarette ashes, dust
or other particles.

6. Do not write directly on the diskette jacket with a hard-point
device such as a ball point pen or lead pencil, as this could
damage the recording surface. Use a felt tip pen only.

7. Before inserting a diskette into the Mini Disk drive, be sure the
motor is off (no LEDs lit and no motor sound).

8. Store diskettes in a vertical file folder or on a shelf where they
are protected from pressure to their sides (just as phono
records are stored).

If you have problems. ..

Frequent occurrences of disk I1/O errors during disk accesses

may indicate a worn diskette or some problem with the Mini Disk
drive or other hardware. Try to isolate the problem by swapping
drives and diskettes as available.

If you have a repeated problem with a particular diskette, try copying
the accessible files onto another diskette. Then erase the faulty
diskette with a bulk eraser (Radio Shack Catalog Number 44-210)
and attempt to format it (see Extended Utilities, FORMAT).

During the format process, the diskette will be checked for flaws,
and any defective tracks will be locked out, leaving you with an
otherwise usable diskette.

If the Mini Disk drive seems to be at fault (errors during access to
several diskettes), bring it in to your local Radio Shack store for
servicing.

29

Mini Disk Operation

Specifications — Drives and Diskettes

Storage capacity (bytes available to user)

Formatted diskette
TRSDOS diskette

Diskette Organization
Tracks per diskette

Bytes per track

Sectors per track

Bytes per sector
Data transfer rate

Average access time
Drive motor start time

Required media

Diskette life*

Data storage life
on diskettes

Diskette storage temperature
Size
Drive unit

Diskettes (jacket size)

Power requirements

83,060
58,880

35

2560
10
256

12.5K bytes/second

750 mS
1 second

Radio Shack Flexible Diskettes,
Catalog Number 26-305, or

26-0405 (pkg of 3)

2.5 x 108 passes/track (110 hrs)
5 years estimated actual use

20 years

50-125 deg.F (12-52 deg.C)

6-3/8 x 3-1/2 x 13-1/4”
(16.2 x 8.4x 33.7cm) HWD
5-1/4x 5-1/4x 1/32”
(13.3x 13.3x0.08 cm) HWD

120 VAC, 60 Hz, 35 Watts (28 VA)

* Typically, diskette life will be limited by improper handling.
Follow handling recommendations listed above for maximum

diskette life.

2-10

Schematic Diagrams
Control Logic

+12VA

R/W 1\ L
X340\ &8O
R/W cT. £ of
XS4 00\ T 300V
59p
L4
80
+5V
R/W 2
XS A0\ RAZ
2K
+ PULL UP 2
NSaol
¢ + PULL UP 1
[XSdo\
2L aA——+5v
=P 4
9
12
4 i V)
v > Suryowm)
Yy R26 TP
+ READ ENABLE 300 Si8 o zco L
YS 40\ I Sop = 3oov
+5V < 00V | 2 20
(5 - 8% & E > — READ DOATA
+5V
é‘n | NOTES: UNLESS OTHERWI\SE SPECIFIED,
N +5V
o R =22 l. ALL CAPMCITORS ARE IN MICRO-
s oS o' WPl 2 - FARADS, 50V, +80,-20% -
+ WeITe PQoT.—-—‘@D 8 T))4c + WRITE PROT. 2, ALL DIODES ARE [(N4148.
! 2 " ’8 XSao\ 2. ﬁx_bgnéosuc_\-roa}zs ARE 1N MicRO-
= i ¥— — WRITE PROTECT ENRIES, 10°%e.
+OUTPUT ENABLE o2 4. ALL RESISTORS ARE IN OHMS,
XSAO\ TP L clo V4w, ©°/o.
|9522\c 2c l 4 . . 5. D—OOPT\lc\SxB\.cmes SHUMT SELECTABLE:
+Sv—AA—g2dE 4 S sher *— -INDEX/SECTOR ©. YXINDICATES 31, g INDICATES 32,
3/~ INDICATE €
R3l SO +5Y— M ————— I G INDEX/SECTOR LED ! S 33, X/ INDICATES X
4 COMPOMENT NOT INSTALLED.
- InDEY /sECTOR ——2& A =
\Vaw : 8 PIN 4 OF ID 1S GROUND.
RES\STOR ARRAY [3] Ri2 vaLuE MAY BE SOK.
VALLE[POSITION [UNUSED
\ 500 | RPL & &
—& = +izv wBon| RrRPI
+12V 10y 11, 100 \S0 0 RPD
12,13 mm
—SF +12VA \< RP4 REF DESGMATION |REF DesiGNATION
+[cze lczo LAST L<eD NOT USED
“4‘1 Tol [ec]] €20,23,24
7% ETM _@Z 1o ID [A-3}-)
+
4)5,6, Te |Pos.onisen OIS ED] TYPE | Poa.]unsen [IEG [ENR] B ey
GuD —V‘&""é——" (ORES qaco 38 4|1] =] 154538 | 2F 2] 4| — R4z
r~P
oo | TuRu 34 Pio 1402 3B 14 [[= [taziin | 4A — 1118 int
—— 4LS 14 2E 1417 | — | Nes9za | 3A - | 5 | 1©
45V RTM ___\7773 14071 20,40 14117 [— 1486 4c |4e2 [
cz1 cm,ls_L 1433 20 1417 | — 96072 4B | 8 | —
=4. ::zlé,zzzé = 1438 2F 14117 | — [2aTe222 | 2A R
4 + [10% ol 1474 28,0 DI1a |14 1 | — |2a@T2905 | \C - | - -
+ov —g +5V 1419 | 3D |8 | — [1s0fL & 7 - =1T-
2.11 1415221 3C o | 8 | ~ [MPaz125 | 4F - |- 1= 2-12

Read/Write Logic +5v rev

1 hizlielste |
<
o
§ § g‘e & TPIB
2 ° ¢
Y AR | 2 ¢ RG -~ MTR o1
o N_"_'W“\ R/W |
2c) R19
W\ AAA 2 e 20K X400
| = W
RN
2,26k 3 =
1
o 1/°/¢ 4 AA—L2
—MoToRr ou % <
+PULL UP 2 2 ! 12 14 cRS
XS400 4 VVv % ' , P28/ R/W 2
€ o Q . A2 G\)/08“‘4\’ > B8 Xs400
-WRITE DATA —xZ& 2{p>2 2ic ap2 1ofo cox
c
=B By 2 =
]) | ¢
+i2vy 9
v
+5 s J |<>|2F pL A
| A R22
[< ??gfw ERASE
é ég q 120
[\2 1 c\
4 3 > ! 4 I‘gg"‘?o i
~WRITE GATE —xE D\c iy = 4
+WRITE PROT. 242 Y = N R/W CT.
xsao0 oz '3 < | & 4 RPZ g Q! 4
—DRIVE SELECT | % O —il>é' 15 ', - AMV- 2N2222 xeao
[o3 1z 42D 15V ’ZV@?— — ACTWITY LD
MY
u >4
2> 12 =° 5o V [PP5 1, 8
- DR\VE- SELECT 2 3¢ 00 - ¥aY AAN L Cy A ACTIVITY LED
DS v
+12v
{ =
IF I - cRIG
- T INACOD L
—bRVE SElecT & x4 4L o L L HM g - WEAD LOARD
53 \2 3 W .
11138 F READ EMNABLE:
TP | $—2% i 4o
f 1533&} + OUTPUT ENABLE
2€ (? 9 8 2 ,'°q xS 400
- i) 2 10] 2E D&
sTeP V3 9""1}/\ - P L N +2v
DIRECTION —xl& o T
110
’ N
R2S R27 z& =< ¢p
16K V- %]'4
AAN—+ SV +5V
2 Cl|'| 9
1.0 = o ==
O")o "’4‘_ s |0°/o@ 7 -3 2]y St QA 12 M
9)28 10 10l -i¢ n—QBm’ b L—W—lﬁc_
2 \o 5 | 3| 4-Bl =)
& a [
\], ec o | 5| . 3c? SREGC
+ PuLL uP A& I N R% 415]p R
xXs400 l c l c <z, ¢ 200 2 B 2D Qp Nk
= 2 = " 1585V ’__"‘T“é q
5% I R) CRIT,|INGOO3
V = I' CRI3 cRIZ cRI : 4
+5 v Py —e¢—¢4—+3V I ' | l—ﬁp — P A
> +! P
& 2 _i{?g Lczo (Ohiz= e | R
?szPs 1 L - y z E‘: e 40> 26, _TRACK ZERO
—TRACK ZERO F “d 8 eSS 2 © l%\é% £ =
TRESR.® < = SIS ItsooPV =
o
+ TRACK, ZERO —F‘z]“ 2 = 5°Jo
N.C-
g
a
o
||
213 +5V

2-14

Mini Disk Operation

Power Supply

Q2
MJE 3055T

|
|
a |
|
21 7| }
2 Mci723cP Q 0 i
R3 RI
cslt F—l\{ 2 $560 0.33/2wW : Pl
2_3259 7 s \T | +12v
0], R2 R4
:F 6 oy 4 l3:: c3 10K 22K I
+
120 VAC Re 0.00! HE
60 HZ | tr? cs |
12v | 1K czol |
ADJ. |
t SRS |
R o 33K "
0-0— CRI —¢——12 |12V RETURN
il CRI7 1| 7805 |2 1
| N
crle - . 340T-05 I - ; i
+ + —_— 45V
GRN 2200 3 220 4
| 25 6 |
| $ V RETURN
i 4 (2 |5VR N
_________ ————d
NOTES b «{_—Uﬁ
UNLESS OTHERWISE SPECIFIED: CURRENT umﬁ 2 :;t’:gso comp
I. ALL RESISTORS ARE 1/4 WATT, 5%, CURRENT SENSE {3 12FVee s
RESISTOR VALUES IN OHMS, K=1000. INV INPUT |4 Hve
2 CAPACITOR VALUES IN MICROFARADS NON-INV INPUT 5 10-vouT
AND WORKING VOLTAGE v REF -6 9t-vz
3.~ INDICATES CLOCKWISE ROTATION Voo 7 81-NC

MCI723CP TOP VIEW

2-15

Mini Disk Operation
.]

Making a TRSDOS BACKUP

Before you do anything else with your TRSDOS diskette, follow these
instructions for making a ““safe copy’” of your system software. That
way, if anything should happen to your original, you won’t be “out
of business’ while you wait to get another one.

Connect the Mini Disk system and power it up as described in the
Mini Disk Operation chapter. Be sure your TRSDOS diskette is in
Drive O when you turn on the CPU. (And just for safety, leave the
write protect tape on the TRSDOS diskette until you’ve duplicated
it.)

If you have more than one drives connected, place a blank diskette
in drive 1. If not, have the blank diskette handy — BACKUP will tell
you when to insert it into drive 0. Do not place a write protect tape
on the blank diskette.

After you power on the CPU, the display will read

TREDOS - DISK OPERATING SYSTEM - VER 2.1

LOS RERDY

Type:

The system will then display:
TRSDOS DISK BACKUP UTILITY VER 201

If you have only 1 drive connected, type:

SOURCE DRIVE NUMBER 7 @
DESTINATION DRIVE NuMeer 7 @ ENRER

If you have two or more drives, type:

SOURCE DRIVE NUMEER 7 @
DESTIMATION DRIVE NUMBER ?

Now type in the date in MM/DD/YY form. For example, if it’s
August 3, 1978, type:

BRHCEUF DATE <MMADDAYYS 7

TRSDOS will then start the BACKUP procedure. First it will format
the blank diskette, locking out any defective tracks; then it will
duplicate the contents of the TRSDOS diskette onto it.

2-16

Mini Disk Operation

If you are using only one drive, BACKUP will tell you when to insert
the destination (blank) diskette, and when to re-insert the source
(TRSDOS) diskette. During the BACKUP process, you will have to
swap the two diskettes several times.
When the process is completed, the message:

BRACKUF COMPLETE - PRESS ENTER TO CONTINUE
will be displayed.
If TRSDOS instead displays the message:

BACKUR REJECTED DUE TO <. .2

then erase the diskette with a bulk eraser (Radio Shack Catalog
Number 44-210) and repeat the BACKUP procedure. If it still won’t
work, you may need to try using another blank diskette.

2-17

TRSDOS
An Overview

NoonXI-i

Contents of This Section

Introduction 2
EnteringaCommand 5
File Specification 6

Section 3 - Page 1

TRSDOS Overview

Introduction

TRSDOS, like the entire TRS-80 Microcomputer System, is designed
to satisfy a broad range of users, including:

. The novice to computers, who wants to start simply and learn
the details gradually

) The experienced programmer, who expects to write complex
programs, and may want to use some of the system routines
on a machine language level, to accomplish a variety of
sophisticated, customized applications

o The pure “user”, who is only interested in using programs, not
writing them (for example, a clerk using an inventory program
on the office TRS-80).

What Is an Operating System?

By the time you finish this book, you’ll have a pretty good idea . . .
But for the time being, here’s an overview.

An operating system is a master program that allows a complex
computer system, including various Input/Output (I/O) devices,
storage devices and programs, to interact efficiently and with
apparent simplicity. The operating system makes sure everything
that has to be done, gets done — and you don’t even have to know
what it is that ““has to get done™!

Here’s a rather arbitrary breakdown of what an operating system
does (see Glossary for unfamiliar terms):

. Interfaces the central processing unit (CPU) with the various
input/output and storage devices

. Accepts and interprets operator commands

o “Shepherds’ your programs (and system utilities you request)
in and out of the execution sequence, by allocating CPU time,
I/O channels, storage and other system resources

. Handles interrupts, and oversees the execution of both
foreground and background tasks

. Provides fundamental routines which would otherwise have to
be included in every program; this saves memory and pro-
gramming time

3-2

TRSDOS Overview
|

You don’t always have to be aware of the operating system to use it.
For example, when you’re using DISK BASIC, you don’t see
TRSDOS at all. But the system is still there, executing a program
called BASIC; BASIC, in turn, executes your own programs and
commands.

At other times, the operating system may be quite visible to you,
allowing you to enter system commands directly. This is the case
with TRSDOS and its “DOS READY” mode.

What Is TRSDOS?

The TRS-80 Disk Operating System (TRSDOS) is a comprehensive
set of system routines and file management utilities. Much of its
complexity (and power) relates to the fact that it is disk-based.

The system is loaded from diskette, and uses diskettes to store
internal bookkeeping information as well as data and programs you
create. TRSDOS uses completely dynamic disk space allocation,

so you can open and manipulate files freely without worrying where
they are physically located on the diskette. When a file fills the
space currently allocated to it, TRSDOS automatically finds and
acquires more space to accommodate additional data (assuming
space is available on the diskette).

(All information on a diskette — programs, data, and TRSDOS
itself — exists in the form of files. For more information on files,
see the Glossary, Files Entry, and the Technical Information chapter.)

In addition to system routines which perform the functions
described above under “What is an Operating System?””, TRSDOS
includes several file management utilities to let you manipulate and
modify existing files on the diskette: copy, append, rename, change
the protection status, etc.

33

TRSDOS Overview

How TRSDOS uses RAM

TRSDOS consists of:

an executive program file

auxiliary system-routine files

a library-command file

extended utility files (BACKUP and FORMAT)
and the DISK BASIC file.

The executive program is loaded into RAM on power-up, and remains
there at all times while TRSDOS is running. For this reason it is
called the “‘resident” TRSDOS program. It includes certain system
routines, tables, pointers, and Input/Output drivers.

The auxiliary system files contain routines and commands which
are loaded as needed to execute your commands and programs.
These routines load into an “overlay’ area of memory. When
TRSDOS has executed the routine, another one may be loaded in
the same area, or “overlayed”. The use of overlays means that
execution of system routines will not affect your memory area
(addresses above 51 FF hex).

The library command file contains the routines for executing most
of the operator commands. These routines load into memory
addresses from 5200 to 6FFF. Therefore your machine language
programs should generally be located above 6FFF. That way they
won’t be affected by execution of the library commands.

The TRSDOS extended utility programs are loaded when you type in
their file names, BACKUP and FORMAT. These programs can use
all available memory — even the resident TRSDOS program is wiped
out when they are loaded.

DISK BASIC is a set of enhancements to LEVEL II BASIC. When

you type in its file name, BASIC, it will load into memory beginning
at 5200, and begin execution.

34

TRSDOS Overview

Entering a Command

Whenever the prompt,
DOS READY

is displayed, you may enter an operator command. In its simplest
form, an operator command is just a single word — a system or library
command, the name of an extended utility program, or the name of a
user command program. All these categories will be detailed later.

As an example,

DIR

tells TRSDOS to display the user file directory for drive O.

In general, operator commands will require more than one word;
for example, to kill (delete) a certain file, you have to specify the
file name.

CKILL RYZ

tells TRSDOS to find the file named XYZ, eliminate it from the
directory of the diskette which contains it, and release the space
occupied by that file.

In general, an operator command consists of a command followed by
one or more file specifications, followed by special parameters:

command [Wfilespec] [B(param)] [BTO] [Bfilespec] [B(param)]

where filespec is a valid TRSDOS file specification (more below)
param is a parameter which details how the command affects the
specified file(s).

If this command format seems complex, don’t worry; that’s because
it’s so generalized. The actual commands can be quite simple, as
you’ll see from the examples given with each command.

Whenever you finish typing in a command, press ENTERS
TRSDOS will then process the command as follows:

1) Check to see if it’s a system or library command; if so, execute
it immediately . .. otherwise

2) Check to see if it’s the name of a utility program; if so, execute
it via the extended utility package ... otherwise

3) Examine the diskette directory on each drive to see if the
command is listed as a user command file; if so, load and
execute the file.

3-5

TRSDOS Overview
—

File Specification

A file specification (filespec) is the way you reference a particular file,
whether you’re operating under TRSDOS, DISK BASIC, or any other
command program (e.g., TAPEDISK).

Disk file specifications have the following format:

namel Jext] [.pw] [:d]
where

name is the file name, consisting of from 1 to 8 alphanumeric
characters, the first of which must be alphabetic

ext is an optional extension of the name, consisting of from
1 to 3 alphanumeric characters, the first of which must be
alphabetic. The extension, if used, must be preceded by a
slash symbol.

pw is an optional password, consisting of from 1 to 8 alpha-
numeric characters, the first of which must be alphabetic. The
password, if used, must be preceded by a period symbol.

:d is an optional drive specification, with d equal to 0,1,2 or 3,
depending on which drive you wish to specify. The drive
specification, if used, must be preceded by a colon.

Do not embed blanks in a file specification. If you do, TRSDOS
will terminate the filespec at the first blank; if the truncated filespec
is valid, you won’t receive an error message.

Valid file names:

A INVNTORY DATAI1l

GAMES/BAS SORTER/VR1 SORTER/VR2
PAYROLL/BAS.SESAME = SECRETS.MYNAME POETRY/TXT:1
DRIVECHK:1 DRIVECHK:2 AUG3078/DAT.JQD
AUG1578 TAXES/TXT.TEAPARTY:1 CHKWRITR/BAS.VERSION2

To take a completely “filled out” filespec,
TAXES/TXT.TEAPARTY:1 refers to a file named TAXES, with
an extender TXT, and a password TEAPARTY. This file is
referenced to drive 1. If you are creating a file under that filespec,
it will be placed on drive 1. If you are reading or writing to the
file specified, TRSDOS will reference drive 1 for the file.

3-6

TRSDOS Overview

What makes a particular filespec unique?

The name, extension and drivespec all figure into the uniqueness
of a particular filespec. The password does not.

For example, the following filespecs refer to distinct files:

A A/BAS A/CMD
DRIVECHK:0 DRIVECHK:1 DRIVECHK:2 DRIVECHK:3

However, the following filespecs cannot be used to reference
distinct files:

RECEIPTS RECEIPTS.AUG3078 RECEIPTS.AUG3178

(There are cases where two different passwords are used to access
the same file; see TRSDOS Library Commands, ATTRIB.)

More on Extensions

The particular extension you use can be purely arbitrary and
personalized. Used this way, extensions give you an extra three
characters to work with in creating a suitable file name.

Examples:

PAYROLL/AUG PAYROLL/SEP PAYROLL/OCT

However, extensions become more meaningful when they are used
as type specifiers, using some convention. Here’s a recommended
set of extensions:

/BAS BASIC program file stored in compressed format

J/TXT ASCII text: BASIC program saved in ASCII form, or
source file, etc.

/CMD machine language command file
/CIM core (RAM) image file, not necessarily executable

/REL relocatable machine language program file

/SYS system program — files which are part of TRSDOS. Don’t
use for your files.

/OVn overlay number n

/DVR I/O driver module

3-7

TRSDOS Overview
. __]

One advantage of this usage is that anyone looking at a directory
listing of a diskette will know what kinds of programs he’s
looking at.

Another advantage is that TRSDOS is equipped to recognize
certain extensions. For example, if a file has the extension /CMD,
then TRSDOS will load and attempt to execute that file when

you type:

filename [N

omitting the extension /CMD.
That’s why you can execute the file BASIC/CMD by typing

BRSIC)RR

Similarly, your own programs can be written to recognize
extensions.

More on Drive Specifications

If you give a drive specification, TRSDOS will use the specified
drive in executing the command. If you omit a drivespec,
TRSDOS will search through the directories of all drives in use,
starting with drive O; the first drive with the correct name/
extension will be used. However, if the command requires a file
creation, TRSDOS will skip over to the first non write-protected
diskette.

For example, suppose four files named DRIVECHK are contained
on drives O through 3. Then every reference to DRIVECHK (no
drivespec) would go to drive 0. The filespecs DRIVECHK:0,
DRIVECHK:1, DRIVECHK:2, DRIVECHK:3, would allow each
of the four files to be accessed.

More on Passwords

The password is assigned when the file is created, and may be
changed via the ATTRIB or PROT commands. Files with
passwords can only be accessed by reference to the password, or
to the diskette’s Master Password. So if you assign a password to
a file, don’t forget it!

It’s important to realize that every file has a password, even if you

do not specify it explicitly when the file is created. In such cases,
a field of 8 blanks becomes the password.

38

_ TRSDOS Overview
... |

For example, if SAMPLE (a file with no explicit password) exists
and you attempt to create a new file, SAMPLE.WATERBOY,
TRSDOS will give you a FILE ACCESS DENIED message, since
in effect you’re trying to access an existing file with the wrong
password. The correct password is a string of 8 blanks — which
you can omit from the file specification, since 8-blanks is the
default password.

39

TRSDOS
Commands

noonNIV-

Contents of This Section

SystemCommands 2
BASIC2 2 TRACE 10
DEBUG ... 3

LibraryCommands 11
AUTO 11 FREE 19
ATTRIB 12 LIB ... 19
CLOCK 14 LIST 20
COPY ... 15 LOAD 20
DATE 15 PRINT 21
DEVICE 16 PROT 21
DIR 16 RENAME 22
DUMP 18 TIME 23
KILL © oo 19 VERIFY 24

Section 4 - Page 1

TRSDOS Commands

System Commands

These three commands (BASIC2, DEBUG, TRACE) leave user

RAM (hex address 5200-End) ““‘untouched”. The necessary code

for these commands loads into the overlay area between the

resident program and hex 5200. The other commands, referred to
as library commands, use addresses between hex 5200-6FFF.

So locate your machine-language routines above hex 7000 to protect
them from the utility commands.

BASIC2 (jump to LEVEL II BASIC)

BASIC2

This command has no arguments or parameters. It simply transfers
control to LEVEL II BASIC. Once it has been executed, TRSDOS
is no longer resident in RAM. Your TRS-80 will then function as

a LEVEL II machine.

You may want to do this to gain memory for programs which
don’t require disk capabilities. Another possible application
would be to LOAD a machine language routine from disk into
high memory, and then jump to LEVEL II BASIC via BASIC2,

so you can access the routine from LEVEL 11, via a USR function.

Example:

[)

MEMORY SIZE?

RADIO SHACK LEVEL 11 BRSIC
RERDY

7

To re-load TRSDOS, press the Reset button or type

TRSDOS Commands

DEBUG (real-time debugging program)

DEBUG([b(param)]
where param = ON or OFF, and ON is the default.

DEBUG is a real-time debugging package for use with machine
language programs, including both foreground tasks and back-
ground programs. (See Glossary.) DEBUG lets you examine and
alter the contents of the Z-80 registers and RAM locations;
jump to specified addresses and begin execution with optional
breakpoints; step through programs one instruction (or one
CALL) at a time, and more.

All address and byte values in this DEBUG section are given in
hexadecimal form — which is the form required by DEBUG.

DEBUG loads into the overlay area; addresses above S1FF are
unaffected.

Type:

DEBUG
to enable the debugging facility. Normal TRSDOS command
interpretation continues; but the debug program is now set to
load and execute under any of the following conditions:

1. When the BREAK key is pressed.

2. After a program is loaded and before its first instruction
is executed.

3. Upon detection of a disk-related error.

Note: TRSDOS system routines and execute-only user routines
cannot be fully debugged: you can use DEBUG to examine/alter
register and RAM contents, but not to single-step, jump, etc., when
these protected programs are the “‘targets” for DEBUG. Furthermore,
since DEBUG loads into the overlay area of RAM, you can’t use it
with other overlay programs and routines.

DEBUG offers two display formats:

register display with indirect RAM
plus any 64-byte “page” of RAM;
full screen, 256-byte page of RAM.

4-3

TRSDOS Commands

In the register display format, DEBUG displays all the Z-80 registers,
organized for interpretation either as two 8-bit registers or as 16-bit
register pairs. Since most programs use several sets of register pairs
as indirect pointers or indexing registers, 16 bytes of indirect data
are presented with each register pair. Each of the flag registers is
shown with an ASCII representation of its flag bits.

An additional 64 bytes of memory are displayed in four lines at the
bottom of the display.

Here’s a typical DEBUG display sequence. Note that the values in
your display will typically vary from these.

f#on

)
L
i, yul
L

n
(SR R PN
raoen
(e o]

[acul O}
I m
=
=

-
2!

M@ D m

P HAFHC

JER S %
40 4F
Fz o1
Al EZ
FF IF3
52 @4

- -
HE o

218
3 AT 2
N5 SE; A

oo
LI

L)
il
m
[xx]

n
L B}

o

R I DR L R o R I | B

e SN B
P .5 B BN o B
LN

1 I
]

=
s
o

e
wou]

o,

=

TR T

o T e B T P T S OS ded

[SR B

U T

N T LN N

D]

- N

[I oS
e Led
o :; DARRN e o

T B [T P

o

m
v

GO R = S D P L

._
ot
[SR OURE U P

o I oI
!
N]

Bropa b b G P T P
T
ix Sl
nonon

S
o

Dol

L1 B B P I SN CR I

R IR w4

non

R

TRSDOS Commands
foro T s T T R S]

In this display, register B contains the hex value OA, and register C
contains 3E. Taking the BC register pair as a pointer, it points to
address OA3E. Therefore, the contents of memory locations OA3E
through OA4D are shown to the right of the BC = 0A3E =>marker.
In this case, address OA3E contains 09, OA3F contains BA, etc.

The flag registers F and F’ are handled differently. For these
registers, the hex contents of the flag register is displayed, along with
a bit-by-bit alphabetic code which makes it easier to interpret the

flag status. For example, bit 7 (leftmost bit) is the sign bit, so the
alphabetic code shows an S in that position whenever this bit is “‘set™.
Here’s a complete table of codes for all the flag bits:

bit status if set ‘if not set

Sign

Zero

unused
Half-carry
unused
Parity/overflow
Negative

Carry

O—=MNWhuoa
AzZzw—=IT—N®n
|

In the above display, none of the F flag bits are set (discounting the
unused bits 5 and 3), and all of the F’ flag bits are set.

Notice the four additional lines below the PC register display. Each
line shows the contents of 16 bytes, starting at the address to the left
of the arrow; the four lines always show a total of 64 bytes of
contiguous memory i.e., locations with sequential addresses. The
starting point in this four-line display is either 0000 or the last
command you specified with the D command (more later.)

The blank area in the lower left of the Display is where commands
you enter will be displayed.

4-5

TRSDOS Commands

DEBUG Commands

Note that some commands are executed as soon as you press the
specified command key; other commands are executed only when
you hit <SPACE> or [Md3} , as indicated below.

Operation Performed

Entry
Command Required
A none
C none
Daaaa <SPACE>

Gaaaal ,bbbb| cccc]]

H none
| none
Mlaaaa) <SPACE>

4-6

Shows the ASCII or graphics
character corresponding to each
value displayed. Shows a period
when the value is not displayable
as an ASCII or graphics character.

Single-steps next instruction, with
CALLS executed in full. (Next
instruction is defined by PC
register.) Target program cannot
be a system or execute-only file.

Sets memory display starting

address to aaaa. In full screen
mode, sets starting address so
aaaa is contained in display.

Place aaaa in PC register and
executes with optional
breakpoints at bbbb and cccc.

Displays all memory and register
values in hexadecimal form.

Single-steps next instruction
(defined by PC register). Target
program must not be read-
protected.

Sets the current modification
address to aaaa. The modification
dialog will then be displayed in
the lower left of the screen. If
aaaa is omitted, the last modifica-
tion address will be used for aaaa.
If aaaa is currently in the display,
its contents will be surrounded

by a pair of vertical bars.

TRSDOS Commands

Entry
Command Required Operation Performed

Rrpbdddd <SPACE> Loads register pair rp with the
value dddd.

rp may be any register pair: AF,
BC, AF’, BC’, IX, 1Y, PC, etc.

S none Sets display to full screen
memory mode, showing 256
contiguous bytes. Press X to
return to register display format.

U none Dynamic display update mode:
lets you observe the execution
of a foreground task. Hold down
any key for a couple of seconds
to exit this mode.

X none Sets display to register format;
also cancels any command you
are in the process of entering,
except R-command.

; none Increments memory display by
one page (in register display
mode, page = 64 bytes; page =
256 bytes in full screen mode).

— none Decrements memory addresses
displayed by one page.

Note: You cannot use the backspace key (<) to delete mistakes
made while entering commands. Instead, just hit the X key to
cancel the command. Or, if you made the error while typing an
address or value, just type the correct address immediately after
the incorrect address. DEBUG will only look at the last four
digits entered.

For example,
D4r74888 <SPACE>
tells DEBUG to display the page of memory containing address 4080.

47

TRSDOS Commands
|

More on the M-command (modify memory)

Any time you wish to alter the contents of a memory location, type
Maaaa and press the <SPACE>. This sets the memory modification
address to aaaa and puts a memory modification prompt in the lower
left corner of the Display. For example, typing

M7Faa <SPACE >

produces:

-
RN

"
!
b O o I
D el
!
Do)

R
3

7o I s
facn]
[an]

facu]

bed U2
NS A O
PN

[N I

Ty I

E
F
5

T m

T oM L
0o L

oo
[)
-,

2%

face]

D

\—

Note the vertical bars around the value of 7F00; These will appear
wherever the modification address appears on the screen.

To modify the contents of 7F00, type the new, two-digit contents
and press <SPACE>. The display will then be updated, and
DEBUG will increment the modification address by one.

To leave an address contents unchanged, simply press <SPACE>
without first entering a new contents. This will increment the
modification address and leave the previous address unchanged.

To exit the modify memory mode, type X or |31 .

If you simply type:
M <SPACE>

DEBUG will default to the last specified modification address, if any;
otherwise 0000 will be used.

Frequently, two values on the display will be highlighted by vertical

bars — one in the 64-byte memory display area, and another in the
indirect memory area associated with the register pairs.

This is because the contents of the modification address happens to
be displayed twice, one directly, one indirectly.

4-8

TRSDOS Commands

More on the G-command

To return to TRSDOS from DEBUG without re-initializing, type

G4azD [IVNEd;]
DEBUG will then be re-entered under any of the three conditions
noted above.

To disable DEBUG after using this exit, type
DERUG <OFF> [ENE3

DIR

To begin execution at the address in the PC register (while you’re
in the DEBUG mode), type

M ENTER
To reinitialize TRSDOS, type

LSRN ENTER

More on the U-command (update display)

In the Update mode, only foreground tasks are executed. So to see
anything happening, you need to look at registers or memory
locations used by a foreground task.

The real-time clock makes a good example.
Type:
Daeds <SPACE>

to display the values 4040 through 4046. These addresses store the
time and date, as follows:

address contents

4040 25mS real-time scheduling counter
4041 seconds

4042 minutes

4043 hours

4044 year

4045 day

4046 month

Now hit U and you’ll see the values updated by the clock foreground
task.

4-9

TRSDOS Commands
.~

Other applications for DEBUG

DEBUG can be accessed via DISK BASIC, to help you locate stack
pointers, table addresses, etc. See DISK BASIC.

DEBUG is also a handy way to create short object code programs,
which can then be DUMPed onto diskette.

To disable DEBUG

As long as DEBUG is in the overlay area, TRSDOS may enter the
debugging program unexpectedly, for example, upon an error. If
you don’t want this to happen, disable DEBUG by typing:

ELLERENTER (to return to TRSDOS)
VIS ENTER
DIR

TRACE (dynamic display of PC register)

TRACE[p(param)]
where param = ON or OFF; ON is the default.

The TRACE command enables a foreground task which displays the
contents of the user’s program instruction counter (PC register) in

the upper right of the Video Display. The 4-digit hexadecimal value
will be updated every eight milliseconds with the current background
program’s execution address. For example:

TRACE
Since it is a foreground task, TRACE operates at all times — in DOS
READY mode, DISK BASIC, or any other program. To temporarily
disable TRACE, disable all interrupts (CMD*““T”” in DISK BASIC).
When interrupts are re-enabled CMD‘‘R” in DISK BASIC, TRACE
will start up again.

Used with the DEBUG program, TRACE can be invaluable in
debugging machine-language programs. It won’t be of much use

during BASIC program execution, though. To permanently stop
TRACE, execute the command:

TRACE <OFF>

4-10

TRSDOS Commands

Library Commands

These commands are overlayed into the RAM area hex 5200-6FFF.
They are loaded as requested in blocks; so, for example, DATE and
TIME are both loaded when either is requested. TRSDOS will not
waste time loading a command if the code is already in RAM.

AUTO (automatic key-in on power-up)

I . AUTO [Bdos-command]

| where dos-command is a filespec for an operator command
L or an executable command file.

Note: To use AUTO, you must remove the write-protect tab from the
system diskette.

The AUTO command lets you modify the power-up sequence, by
specifying a command to be executed immediately after power-up.
Typing:

AUTO dos-command

causes TRSDOS to write dos-command as an ‘“‘automatic key-in”
on the drive 0 diskette, replacing any previous automatic key-ins.
From that point on, every time you power up using that TRSDOS
diskette, dos-command will be keyed in automatically whenever
TRSDOS is initialized. An automatic key-in takes the place of
keyboard input.

To restore the power-up sequence to normal, type:

AUTO

This will eliminate any automatic key-ins.

Examples:

AUTO CLOCK on subsequent power-ups, the display clock
command will automatically load and execute.

AUTO BASIC on subsequent power-ups, TRSDOS will load
DISK BASIC and begin the initialization dialog.

NOTE: You can override any automatic key-in by holding down the
key during power-up. This may be your only way of
regaining control of the system, for example, if dos-command is not

a working command program.

4-11

TRSDOS Commands

ATTRIB (set protection attributes)

ATTRIBYfilespech(param| param . . .])

where param can be any of the following:

param meaning
I make file Invisible to normal Directory command
ACC=pswl assign pswl as the new access password
UPD=psw2 assign psw2 as the new update password
PROT=level assign level as the new access protection level:

(KILL, RENAME, WRITE, READ, EXEC)

The filespec must exist on one of the connected drives.

This command lets you alter the protection status of a file, by
changing passwords and/or the degree of access granted by a
password. (See TRSDOS Overview, “‘File Specifications” section.)

Specifying the I parameter gives the file the invisible attribute. To
display Invisible files in the Directory, you have to specify the

I parameter in the DIR command. There is no way to remove the
[attribute, short of copying the file to a new file which does not
have the I attribute.

Example:

—

ATTRIB VIDSCAN/CHD:1 (D>

FILE DIRECTORY --- DRIVE 1 MANURL -— @3/681/78

CHESSACHMD P MENUATAT

TESTABRS P

412

TRSDOS Commands

~

FILE DIRECTORY --- DRIVE 1 MANUAL —— 89/B1/78

CHESS CMD P VIDSCANACHD I MEMUATET
TESTA/BRS P

DOS READY

All files are protected with two passwords, an access and an
update password. Access and update passwords may be identical,
and they may consist of all blanks. Use of the update password
grants total privilege to a file — you can kill, rename, write, etc.
Use of the access password, on the other hand, grants a limited
privilege, as specified by a PROT parameter in the ATTRIB
command.

The protection levels form a hierarchy, and each level implies
access to all lower levels.

level privilege

KILL total privilege

RENAME rename, write, read, execute
WRITE write, read, execute

READ read, execute

EXEC execute only

When you create a file, the password you specify becomes both
the access and the update password. (If you don’t specify a
password, a string of 8 blanks is assigned as a default password
for both access and update.)

4-13

TRSDOS Commands

Once you have created the file, you can use ATTRIB to assign
different values to the access and update passwords. Having
two different passwords can be very useful in business applications.

For example, suppose you have a data file, PAYROLL, and you
want an employee to use the file in preparing paychecks. Assume
the file was created with default (blank) passwords.

Then:
ATTRIE PAYROLL CACC=EMPLOYEE. UPD=MANAGER. PROT=RERD

would allow the EMPLOYEE to read the file, while only
MANAGER could alter it.

To delete a password (set it to blanks), omit the password after
the equals sign in the password specification. For example,

ATTRIE PRYROLL. MANAGER (RCC=)

sets the access password to blanks, and leaves the update password
unchanged.

Note: To access a file from DISK BASIC requires a privilege of
READ or higher.

CLOCK (display real-time clock)

CLOCK [W(param)]

where param=0N or OFF; if no param is specified,
ON is assumed.

Typing:
CLOCK

causes the internal real-time clock to be forcibly displayed on the
top line of the Video Display (PRINT positions 53-60). Any
characters present at those locations will be overwritten.

The clock display is updated once a second via a “foreground task”.
In other words, as long as the interrupts are enabled, TRSDOS

will periodically interrupt whatever ‘“background program” is
executing (DISK BASIC, TAPEDISK, etc.), and update the clock
display.

TRSDOS powers-up in a CLOCK OFF condition.

4-14

TRSDOS Commands

To stop the display-clock function, execute the command:
CLOCK COFF»

See TIME command for information on the real-time clock.

COPY (make a duplicate file)

COPY WBfilespecl b TOWfilespec2

Creates a duplicate of filespecl under the new name filespec2. If
filespec? already exists, its previous contents are lost. The first
file (filespecl) is unchanged by this command.

You must have at least two disk drives to copy a file from one
diskette to another.

Examples:

COPY PAGE?/THT:@ TO PAGE?/TKT:1
duplicates PAGE7/TXT on drive 0 onto drive 1, using the same
name/extension.

COPY OLDFILE/BRS. PD@ TO DEADFILE
duplicates OLDFILE under the name DEADFILE. Note that
OLDFILE is protected by a password, while DEADFILE is not.
DEADFILE will be created on the first non write-protected
drive in the sequence 0-3.

DATE (set date)

DATEbpmm/dd/yy

where mm is a 2-digit month specification, mm=01 to 12
dd is a 2-digit day specification, dd=01 to 31
yy is a 2-digit year specification, yy=00 to 99

For example, if it’s August 3, 1978, type:
DATE @8/63/78

This command resets the real-time date. At power-on, the date
is set to 00/00/00. The date is updated each time the clock
cycles through a 24-hour period. The real-time clock calendar
includes the logic to account for 28, 29, 30 and 31-day months.

415

TRSDOS Commands
X —

DEVICE

DEVICE

This command has no arguments or parameters. It simply lists all
currently defined I/O devices: KlI=keyboard, DO=video display,
PR=line printer.

DEVICE
DIR (display directory)

Example:

DIR[B:d] [W(param|,param . . .])]

where :d = a drive specification, d=0,1,2 or 3, and
0 is the default
param = any of the following:

param meaning
S display all System and non-Invisible files
I display all Invisible and non-System files
A display disk space allocation for all files displayed

This command reads and displays the file directory of a specified or
assumed drive. If no parameters are specified, only non-Invisible user
files will be displayed.

Disk space allocation is indicated as follows: LRL (logical record
length), EOF (end of file, i.e., highest record number used), and
SIZE (measured in GRANules, where 1 granule = one-half track,
or 1.25K bytes).

Examples:
LAENTER

displays all user files on drive 0. A typical output for this command
might be:

—

FILE DIRECTORY --- DRIVE @ TRSDOS - 16/03/78

VIDSCANZ/CMD CLKARXESS/BRS SELECTRC/DVE
TEUG/CHMD EDTASHM/CHMD GLOSSARY/BAS
LISTER/BAS TRPEDISK/CMD KBFIX/CIM

DISKDUMP/BRS GLOSSACC/BRS YIDSCANACHMD

DOS READY

4-16

TRSDOS Commands

DIR 1 (1.5

displays all files, including System and Invisible files. A typical
output for this command might be:

—

FILE DIRECTORY ---— DRIYE 1 MANUARL —— @9/84/78

BOOTASYS SIF DIR/SYS SIF CHESSACHMD P
MENUATET TESTABRS F

0OS READY

Note the P beside some files. This indicates they have non-blank
passwords.

DIR <A

gives the disk space allocation on drive O, user files only. Typically:

—

FILE DIRECTORY --- DRIVE @ TREDOS —- 11718778

EDTRSHACHMD LEL= 25& / EOF= 27 / SIZE= & GRANS
REMACHD LEL= 256 / EOF= 18 / S1ZE= 4 GRANS
YHMTBUGA/CHD LEL= 256 / EOF= a / SIZE= 2 GRANS
SEOCHECKATRT LEL= 25&¢ / EOF= 2 / S1EE= 1 GRRHS
TEUG/CHD LEL= 25& / EOF= 5/ S1ZE= 2 GRANS
THPEDISK/CHMD LEL= 23& / EOF= 2 ¢/ SIZE= 1 GRANS
CPRINT/BRS LEL= 25& / ElF= 1/ SIZE= 1 GRANS
HMRESH/CHD LREL= 23& / EOF= 18 / S5IZE= 4 GRANS

DoS RERDY

If a Directory listing cannot fit on the screen, only the first 12 lines
will be displayed. Press any key to see the remainder of the listing,
in increments of 16 lines.

4-17

TRSDOS Commands
—

DUMP (dump memory to disk)

DUMPVfilespecW(START=X'aaaa’ END=X'bbbb'[,TRA=X"cccc’])
where aaaa, bbbb, cccc are 4-digit hexadecimal addresses

aaaa = starting point in RAM of the machine
language program or data block to be
dumped to disk; aaaa must be greater than
6FFF.

bbbb =ending point in RAM of the block; bbbb
must be no smaller than aaaa

cccc = transfer address; when TRSDOS attempts to
execute the file, it will start at cccc. If cccc
is omitted, 402D will be used. This is the
address of the normal re-entry into
TRSDOS (i.e., re-entry with DOS READY
displayed; no re-initialization).

If filespec already exists, its previous contents will be lost.

If filespec does not include an extension, TRSDOS will automatically
assign the extension CIM (core image) to the file.

Once you have dumped a machine language program onto disk, there
are two ways to execute it.

1) Simply type filespec . TRSDOS will load the
file and begin execution at the transfer address.

2) Type DEBUG and then filespec
After TRSDOS loads the file, it will enter the DEBUG
package. PC will contain the transfer address. You can
then single step the program (I command), call-step
(C command), or execute it in full by typing:

G
Note: A file with the extension /CMD can be loaded and executed
simply by typing the file name, without the extension, and
pressing . TRSDOS will supply /CMD as a default
extension.
Examples:

DUMFP GRAPHICS (START=X-7@008°, END=X‘78RG", TRA=X 7088)

DUMF DATARZCIM:1 (START=X‘E@@6°, END=X'2658°)

|
4-18

TRSDOS Commands
T T Y 7 0 P U N R S Sy

KILL (delete a file)

l KILLWfilespec

This command deletes the specified file and frees the space for use
by the system.

If no drivespec is included in the filespec, TRSDOS will search for
the first drive which contains filespec, and attempt to delete that
file. If the diskette is write-protected, TRSDOS cannot KILL the
file.

Example:

KILL OLDFILE/BAS. PRSSWORD

FREE (display free space on all drives)

FREE

This command has no arguments or parameters. It displays the
amount of free space remaining on all drives in use, in terms of files
available and unused granules. (Each diskette can contain up to

48 user files; data diskettes have 67 granules available for user files;
TRSDOS diskettes, 44 granules.)

For example:

—

IVE @ —- TRSDOS 16/21/78
DRIVE 1 -- TRSDOS 168,/63/78

DOS REARDY

LIB (display library commands)

LIB

Requires no arguments or parameters. This command displays all
TRSDOS system library commands available. These are the
commands which load between hexadecimal 5200 and 6FFF.

For example:

LIE

4-19

TRSDOS Commands
]

LIST (list text file contents to display)

LISTWfilespec

Reads the specified file and lists its contents on the Video Display.
Because LIST gives an ASCII representation of the data in the file,
filespec should refer to a text file. If you LIST a non-text file, the
display will be filled with a meaningless sequence of ASCII and
graphics characters.

Text files include:
. BASIC programs saved with the A option

. data files created by BASIC sequential write (PRINT#n)
statements

) assembly language source code; etc.

To temporarily freeze the Display during LIST execution, hold down
the SHIFT and @ keys-until the listing pauses; press any key to resume
execution. TRSDOS will only accept such a pause after listing a
complete physical record — that’s why you need to hold down the
SHIFT @ keys until TRSDOS “‘notices” your pause command.

Example:

LIST PROGLATHT
LOAD (load machine language file)

LOADYfilespec

Loads the specified file into RAM and returns control to TRSDOS.
The file specified must contain Z-80 object code, and normally
would have been created by a DUMP or TAPEDISK command.

LOAD is useful for loading several programs into memory, so that
all of them can then be called by a master program, which may be
another machine language routine or a BASIC program. (Of course,
all the different files must load into non-overlapping areas of RAM.)

To load subsidiary object code programs and then execute them
via a master object code program, LOAD each of the subsidiary
programs, then type the master filename and press Y} .

Examples:
LOAD GRAFHICS
LOAD DATAACIM:1

4-20

TRSDOS Commands

PRINT (list text file to line printer)

PRINT bfilespec

Works just like LIST, only the output is sent to the line printer. The
file should be in text (ASCII) form.

Examples:

PRINT SEQCHEEATXT
FPRINT PRGE?/TAT @

PROT (use diskette’s master password)

PROT[b:d] [W(param|,param . ..])]

where :d = a drivespec, d=0,1,2,3; if no drivespec is
given the first drive is used
param can be any of the following:

param meaning

PW change Master Password

UNLOCK remove passwords from all user files
LOCK assign the master password to all user files

LOCK and UNLOCK are mutually exclusive; use only one.

This command changes the protection status of all non-System files
on the specified drive. To use it, you need to know the diskette’s
Master Password, which is assigned during FORMAT or BACKUP.
The diskette you reference must not be write-protected.

Note: Your TRSDOS diskette has the password, PASSWORD.

To change the Master Password, specify PW as a parameter. To
remove passwords from all user files, specify UNLOCK. To place
the diskette’s Master Password on all user files, specify LOCK.

(The Master Password then becomes the update and access password
for those files.)

Examples:
PROT 1 CUNLOCK? (3 R

After you enter this command, TRSDOS asks for the Master Pass-
word for the drive 1 diskette. If you enter the password correctly,
TRSDOS will remove all user assigned passwords from files on
that diskette.

4-21

TRSDOS Commands

FROT (PR, LOCED

After you specify the Master Password correctly, TRSDOS will
prompt you to enter a new Master Password. This new password
will be assigned to all user files, since the command included the
LOCK option.

A typical display sequence using the PROT command:

—

LS READY

MASTER PRSSWORD 7
OS5 READY

FILE DIRECTORY ---~ DRIVE @ TREDOS - 18721778
EDTRSHACHD F REMsHD P YIDSCANASCHD P

YHMTRUGSCHD F SEQCHECESTHT F TBUGATHD P
TAPEDISKATHD F HMRSMACHD P

s RERDY

Note that all user files are now protected with the Master Password.

RENAME

RENAMEDWfilenamel | Jextl] [.psw] [:d]1 WTOWBfilename2|/ext2]

where filenamel, filename2 are TRSDOS file names,
extl,ext2 are extensions
:d is a drivespec (d=0,1,2,3)
psw is a password

This command changes a file’s name from the first name/extension
to the second name/extension. Note that the second name/extension
should not include a password or a drivespec. The first file’s
specification may include a password and drivespec, as required to
identify a desired file.

RENAME cannot be used to change a file’s protection attributes

or to move it to another drive. The previous passwords, protection
level, and Directory attributes (Invisible for non-Invisible) will be
assigned to the renamed file, and the file will remain on the same
diskette.

RENAME also checks to see that the intended new name does not
duplicate a filename currently on the same diskette. If it does, the
comman- is cancelled and an error message is displayed.

4-22

TRSDOS Commands

Examples:

RENAME MATHPRK TO MATHPRK/BARS
adds an extension to the filename.

REMAME ARBCDEADAT TO ABCDEF/DAT
changes the file name only.

RENAME PRYROLL1/TXT. GSR TO PAYROLLZATKT
changes the filename; the password is retained automatically.

RENAME FILEL:Z TO FILEZ
changes the filename of the file on drive 3 only.

TIME (set real-time clock)

TIMEWhh :mm :ss

where ik is a 2-digit hours specification
mm is a 2-digit minutes specification
ss is a 2-digit seconds specification

This command sets the clock. On power-up, the clock is reset to
00:00:00.

Note: TRSDOS maintains a 24-hour/day clock format. After
23:59:59, the clock starts over at 00:00:00, and the day is
incremented.

The current time is stored at locations hexadecimal 4040-4046;
these values are updated via the realtime clock as long as interrupts
are enabled.

Example:
TIME @8:24: 60

See DATE and CLOCK

4-23

TRSDOS Commands
P i GRRERTS R S e]

VERIFY (automatic read-after-wrife)

VERIFY [W(param)]
where param = ON or OFF; ON is the default.

YERIFY
causes TRSDOS to verify all user disk writes (for example, file-writes
from DISK BASIC). This will be useful when you want to be sure
that no data is lost or altered during a disk write. For example,
before you COPY a file, you may want to enable VERIFY.

However, when VERIFY is on, disk accesses are only about 50
percent as fast as normal.
Typing:

YERTIFY <OFF» ENAES
disables the automatic read-after-write verification.
(note that TRSDOS powers up in a VERIFY (OFF) condition.)

Verify does not affect system table and directory writes; they are
always verified.

4-24

Extended
Utilities

NoonIV—-

Contents of This Section

TRSDOS Utilities i ... 2
BACKUP 2 FORMAT 4

Auxiliary Utilities 6
TAPEDISK 6 DISKDUMP/BAS 8

Section 5 - Page 1
BermnET NSy
R T R P B S B R T I S P S e S s R

Extended Utilities

TRSDOS Utilities

These are special programs, not strictly a part of TRSDOS, which
you can call to perform some very useful functions. Unlike system
routines and library commands, these extended programs may use
memory locations above hex address 6FFF; therefore any programs
you have in RAM may be lost when you load a utility program.

BACKUP (duplicate a diskette)

BACKUP[B:dI1HTOB:d2]

where :d1 is a specification for the source drive
:d2 is a specification for the destination drive
dl,d2=0,1,2 or 3.

If you omit the drivespecs, BACKUP will prompt you to enter the
source and destination drive numbers one at a time.

This utility duplicates an entire TRSDOS or data diskette. You can
use any two drives for the backup, or you can perform the backup
using drive 0, by swapping source and destination diskettes when
BACKUP tells you to.

If the destination diskette is unformatted, BACKUP will format it,
locking out any defective tracks, and will then proceed to copy

all source disk files onto it. (If the destination disk cannot contain
all the source disk data because of locked out tracks, the backup will
be rejected.)

BACKUP will accept a pre-formatted diskette only when its Master
Password and Diskette Name match that of the source disk. In this
case, BACKUP will skip the formatting step and begin the copy and
verify process. If for some reason, BACKUP rejects a diskette,
erase the diskette with a bulk eraser and try again.
Examples:

BACKLF

BRCEUP 8 TO @

BRCEUP & TO -1
Here’s a typical BACKUP sequence, using only Drive 0.

5-2

Extended Utilities

TRESDOS BRCKUP UTILITY

VER 2.1
BRCEUF DATE (MMADDAYY? 7

LINSERT SOURCE DISKS

BACKUP will then prompt you to insert source (original) and
destination (duplicate) diskettes as necessary.

swapping.

When using two drives for the BACKUP, you won’t have to do any

53

—

Extended Utilities

FORMALT (prepare a data diskette)

FORMAT

This utility lets you prepare data diskettes containing a minimum of
system information and leaving you with a maximum amount of
space for program and data files. (TRSDOS diskettes have 44
granules/55K bytes available for your files; data diskettes,

67 granules/83.75K bytes.

Note: Data diskettes can only be used in drives 1,2, and 3, except
during a BACKUP or FORMAT.

FORMAT takes a blank (new or magnetically erased) diskette,
records track/sector boundaries on it, then initializes it with
directory and bootstrap files. During the formatting process,
TRSDOS will let you specify any tracks you’d like to lock out, so
you can use them for non-TRSDOS files.

Unless you have another (non—TRSDOS) means of accessing the
diskette, don’t lock out any tracks.

FORMAT will lock out any defective tracks, to prevent data
from being lost in these areas.

If you begin to get READ errors during accesses to a diskette,
erase the diskette and re-format it. If there are defective tracks,
FORMAT will lock them out, and you’ll be left with an other-
wise usable diskette.

5-4

Extended Utilities

To lock out tracks. ..

Specify them individually or as a range.

Example:

1,3-5 locks out tracks 1,3,4,5.

TRSDOS will never try to write to locked-out tracks.

Here is a typical FORMAT sequence, using Drive 1.

—

[0S REALY

DISKE FORMATTER UTILITY 2.1

WHICH DRIVE 1 TO BE USED 7 4
DISKETTE NAME 7 -

CREATION DATE <MM/)
MASTER PRSSWORD 7 TRSSE@

DO YOU WANT TO LOCK OUT ANY TRACKS? ¥
WHICH TRACKS <(@-34>7 4,6-8

FORMAT THE LOCKED-OUT TRACKS? H

55

Extended Utilities

Auxiliary Utilities
TAPEDISK (copy tape file to disk file)

This utility lets you load a SYSTEM tape into RAM, and then dump
it into a specified file on the disk. (SYSTEM tapes are created with
the Editor/Assembler, TBUG, or supplied by Radio Shack.)

Do not attempt to use TAPEDISK to load tape files which load
below hexadecimal address 54F4 (decimal 21748). TAPEDISK
uses this area.

Note: Most Radio Shack SYSTEM tapes designed for use with
LEVEL II TRS-80’s will not work under DISK BASIC, because of
differences in RAM usage under DISK BASIC and LEVEL II.

To load and execute TAPEDISK, type:

TRPEDISK RS

TAPEDISK will come up with the prompt,

?

Any time the prompt is displayed on the current line, you can enter
one of the three TAPEDISK commands.

1) Load from tape

C

is the command to turn on the Recorder. (To use TAPEDISK,
you should connect the recorder directly to the TRS-80 tape jack,
not to the Expansion Interface jack.)

Type:

(g

When the file has loaded, you can load another SYSTEM tape, or
enter another command.

5-6

Extended Utilities
[e e)

2) Dump to disk

Fifilenamel Jext] [.password] :dBaaaaBbbbblcccce

where filename is a TRSDOS filename
/ext is an optional extension;
.password is an optional password specification;
:d is a required drivespec, d=0,1,2 or 3;

aaaa is the hexadecimal starting address in RAM;
bbbb is the hex ending address in RAM;

cccc is the entry point for execution of the file.
All addresses are in 4-digit hexadecimal form.

When you’re ready to dump the program from RAM onto disk, type in
the F command. For example, if the program loaded into RAM
addresses 7000-70FF, and the entry point is at 700A, you’d type:

7F USRCODEACMD:1 7066 76FF 7o@A
After the dump, the prompt will return.

3) Exit to TRSDOS
E

This command returns you to TRSDOS, via the normal re-entry
(no re-initialization).

Below is a typical TAPEDISK display sequence.

~

0OS RERDY

70
7F GRAPHICS/DAT:@ 6ROE 6FFF 4@2D
GAENTER

DOS READY

57

Extended Utilities

DISKDUMP/BAS (examine disk file)

This is a BASIC program. To execute it, you must load DISK BASIC
first, and then load DISKDUMP/BAS:

—

HoW MARY FILES? ENRERD
MEMORY SI1ZE7?
RADIO SHACK DISK BRSIC VERSION 1.1

REF
S IENTER

DISKDUMP lets you look at the contents of any of your disk files.
It will help you experiment with various random and sequential disk
output statements, and also help you to debug disk 1/0 routines.

The program is written to dump to the Line Printer. If you do not
have one connected, change all LPRINTs to PRINTSs (lines
170,240,250) and change line 160 to:

el GETL, SN
This program prompts you to enter the filename and then to enter
the sector you want to examine. You can simply press [ZARRZA]
without a number and the sector-by-sector examination will be

sequential, starting with sector 1, the first physical record in the
file.

If you specify a sector number higher than the EOF number
(end-of file), no error message will be given and the “sector” will
appear as zero-value bytes.

The sectors are printed 16 bytes at a time. These 16 bytes are dis-

played first in hexadecimal code, then with the corresponding ASCII
code. The ASCII representation is surrounded by ! symbols. Periods
are substituted for bytes which have no alphanumeric representation.

Below is a typical DISKDUMP session.

—

SECTOR DUMP UTILITY 1.1

FILESPEC:

SECTOR NUMBER <OR “ENTER® FOR NEXT SECTOR) : EYREGE

5-8

Extended Utilities
o T R T e g g T IR e i L T s b e L S L e e e i s

FILESFEC: SEQCHECKATAT SECTOR: 1

@ 'S5 CLS: CLEAR 166!

@ 5026 42 40 53 3R 26 42 40 45 41 52 28 31 36 =
1& 38 8D 21 38 28 41 294 =D 42 4E 4B 45 59 24 3R 49 '@ 18 AE=INKEYS: 1!
2 46 41 24 3D 22 22 54 48 45 4E 31 =68 @b 31 Z5 28 'FRE=""THEH1G. 15 !
4a 49 46 26 41 24 =D 22 48 22 34 48 45 4E 28 32 5 VIF A$="E"THEN 23!
&4 8D 32 3@ 28 58 52 49 4 54 41 24 2B ZER 42 24 2D 26 PRINTAS: (Be=!
a6 42 24 2B 41 24 ZA 47 4F 54 4F Z1 Z@ 8L 22 35 260 'BFHA$GOTOLE. 25 0
1) a8 52 49 4E 54 ZR 58 52 49 4E 54 22 44 41 54 41 'PRINT . PRINT"DATA!
11z 28 49 4D 41 47 45 28 57 43 40 40 28 41 53 28 4F ¢OIMARGE WILL AS OF
128 4E 28 4E 45 58 54 28 40 42 4E 45 2E 28 28 22 43 N NEXT LINE. (!

b

144 48 32 24 28 38 1
1e4 4C 423 4D 49 54 43
176 49 25 =D 31 28 54 4F 2@ 4C 45 4B 28 42 24 29 IR 'IH=1 TO LENCES) !
192 26 58 32 49 4E 54 260 41 53 43 Z8 4D 49 44 24 28 FRINT ASCCHMIDSC!

22 D 42 58 54 45 28 44 45 THR$(91"=BYTE DE!
29 22 @b ZE Z8 26 46 4F 52 'LIMITERD". 26 FOR!

nro
oo L

prys

2aa 42 24 20 49 25 29 209 432 48 52 24 28 I8 31 29 B 'BE, IXDOCHR$C91) !
224 IR 4E 45 58 54 @D 3T 5 28 58 52 49 4E 54 @D 25 PoNEXRT. Z5 PRINT. 3!
248 I8 20 4F 5@ 45 4E 22 9F 22 20 %1 20 22 54 45 52 '@ OPENY0Y, 1, "TES!

5-9

TRSDOS
Technical

Information

noonI-

Contents of This Section

Memory Organization 2
Disk Organization 2
File Structure, 3
System Routines for Assembly I/O 5
Data/Device ControlBlocks 6
Physical and Logical Records 7
Fundamental TRSDOSI/OCalls 8
TRSDOS Error Codes/Messages 12

Section 6 - Page 1

TRSDOS Technical Information

Memory Organization

The TRS-80 Disk Operating System is comprised of 1K of ROM
resident CIO (Character-oriented I/O) drivers and 4K of RAM drivers,
schedulers, tables, pointers, etc. The ROM resident CIO drivers are
also used by LEVEL II BASIC and therefore are part of its 12K
ROM requirement.

Since LEVEL II is upward compatible with DISK BASIC, an
additional 0.5K of RAM is required for both versions of BASIC.
This means that user memory starts at hex 5200, resulting in 11.5K
of user RAM in a 16K machine.

Note: The memory which is completely untouched by both
TRSDOS and DISK BASIC code begins at hex 7000.

TRSDOS is comprised of a resident system and several overlays
which are loaded from disk as the need arises (for example, to open
or close a file).

The system has a modular design. System entry-point vectors

are in the lowest portion of the 4K RAM, followed by the interrupt
handling, disk file handling, task scheduling and general purpose
resident system routines. System bufters and overlays comprise the
last portion of the 4K RAM requirement.

Since all major system commands are actually loaded as needed
from disk in the form of utilities (the “library commands” and the
extended utility programs), the TRSDOS system facilities can easily
be enhanced without affecting the RAM memory requirement.

Disk Organization

Each TRSDOS system diskette contains a TRSDOS system, a utility
command library, a file directory, and system tables.

The minimum system overhead amounts to one full track of directory
information and a half track of TRSDOS bootstrap program and
other information. This means that every TRSDOS diskette is self-
loading, although it may or may not actually contain the TRSDOS
system. This is done to prevent the Computer from attempting to
bootstrap a diskette containing only user data files.

The utility command library is optionally available on the diskette.
Since the utility command programs are not always required,

it will often be advantageous for multi-drive users to format
diskettes for use in drives 1 through 3. Such “data diskettes”
contain a minimum of system code, leaving more space for user

6-2

TRSDOS Technical Information
R O S T R S e T T R S T A RS E T

files. Maximum file size is limited only by the physical size of the
diskette, since a file must be wholly contained on one diskette.

Each diskette is single-sided and has 35 tracks of information.
Each track contains 10 sectors of 256 bytes each. See Mini Disk
Operation, “How a Diskette Works™.

Normally, data read/write operations may only be initiated at sector
boundaries, and must consist of exactly 256 bytes. However,
TRSDOS allows the user to have maximum flexibility with minimal
effort by automatically blocking and de-blocking all file accesses

to user-specified logical record lengths, even if this requires
“spanning” of two sectors.

The system disk file structure allows maximum use of disk file space
by automatically segmenting files across a diskette in several small
pieces. These pieces are correlated into one logically contiguous

file by the system without your needing to know the physical file
location. This structure eliminates time-consuming disk-packing
operations.

File Structure

A TRSDOS file is composed of one or more segments of storage
space. Each segment consists of from one to 32 physically
contiguous granules of storage. A granule is the minimum
allocatable unit of storage, and consists of five sectors (1.25K bytes).
(See Figure below).

Since a file is always lengthened by granules, a small amount of free
storage is generally present at the end of every file. This free
storage allows minor file additions to be made in space which is
physically contiguous to the file.

The effect is to decrease the amount of ““thrashing” present in a file
which has had frequent additions made. (A wholly sector-mapped
system could not offer this benefit.)

Every time a disk file is extended (either initialized or lengthened),
extra granules may be allocated to that file, depending on the file’s
accumulated length, diskette space, saturation, etc. These extra
granules, along with all granules after the one containing the file’s
EOF mark, are recovered and returned to the system when the file
is closed.

6-3

TRSDOS Technical Information
L]

A TRSDOS file

i SEGMENT | SEGMENT 2

SEaMENT: | GRANULE | | GRANULE 2 GRANULE N
GRANULE:| SECTOR X | SECTORX+ | |SECTOR X4
SECTOR: | BYTE | | BYTE2 | BYTE3 | [BYTE 256

LRN: Logical Record Number, used to specify an individual,
user-defined logical record. Such a logical record is the
smallest unit of information which can be addressed
during disk input/output (a physical record is the unit
which is actually read from or written to disk).

File: A group of logical records; the largest unit of information
which can be addressed by a TRSDOS command.

Sector: A physical record, composed of 256 contiguous bytes.

Granule: The minimum allocatable unit of storage for a particular
file.

6-4

TRSDOS Technical Information

System Routines for Assembly-Language I/O

This information is provided for customers who wish to write their
own assembly level I/O routines. An explanation of the calling
sequence and parameters for each necessary 1/O routine is given.

A knowledge of Z-80 machine code is assumed.

The following notations are standard in this section:

HL=> xxxx Registers HL contain the address of (point to)
xxxx in machine format. (If address of
xxxx=34B2H then the values in the registers are:
H=34 ;1=B2)

DE=> xxxx Registers DE contain the address of (point to)
xxxx in machine format. (If address of
xxxx=5AF1H then the values in the registers are:
D=5A ; E=F1)

B=xx Register B contains the numeric value of xx in
binary form. If xx=64 decimal, then B=40H.

A= xx Register A contains the numeric value of xx in
binary form. If xx=127 decimal, then A=7FH.
Register A is used to return the TRSDOS error
code for I/O calls. A complete list of error codes
and their meanings appears at the end of this

chapter. »

Z=0K Zero flag is set (OK) if successful return from the
system routines.

X'nnnn' Hard RAM address in hex notation (e.g., 402D is
X'402D").

LRL Logical Record Length. 1-255 bytes only. You

can define records any length you wish up to 255
bytes maximum. A length of zero is a special
case for physical records only, and indicates

the LRL=256 bytes.

BUFFER 256 user designated bytes in RAM for TRSDOS
to read sectors from or write sectors into. If
LRL=0, this area is the responsibility of the user
to manage before and after I/O. TRSDOS
manages this area if LRL is between 1 and 255
bytes. Do not alter this area when using logical
record processing.

UREC User record: the address of the contiguous
RAM byte-string assigned by the user as his
logical record area. Its length must be equal to
LRL. Itis a different area from BUFFER.

6-5

TRSDOS Technical Information

DCB before OPEN and after CLOSE:

The DCB is defined as 32 contiguous bytes of RAM designated by
the user. Before OPEN and after CLOSE, it is a left justified,
compressed {(no spaces) ASCII string, as in a standard TRSDOS

filespec:
CONTENTS OF 32-BYTE DCB
8 16 24 32
T T T T T T T T 7 T 11 T 1 T T T T 1T 71 1 T 1 L
FILENAME/EXT.PASSWORD: D $p bW B BB KBS
[AN U (N N AN TN N N (U NN (NN (N0 SN TN (N S N N N TSUNNN N U N N T TN S T Ny oy |

Notes: /EXT, .PASSWORD, :D are optional.
$ stands for a carriage return (X'OD’)
W stands for a blank (X'20°)

Explanation of DCB while OPEN:

Ish/msb is least significant byte followed by most significant byte in
780 RAM format (i.e. addr=7CC8 in RAM is C8 7C).

Addr. Len. Explanation

DCB+0 — 3 — Reserved
+3 — 2 — Physical Buffer address (Isb/msb)
+5 — 1 — Offset to delimiter at end of current record
+6 — 1 — File drive number residence
+7 — 1 — Reserved
+8 — 1 — EOF offset of last delimiter in last physical record
+9 — 1 — LRL (logical record length)
+10 — 2 — NRN (next record no. — open sets=X'0000" — Isb/msb)
+12 — 2 — ERN (ending record no. — last in file — Isb/msb)
+14 — 18 — Reserved

NRN Next Record Number defines which record is to be read or
written by the next system call for READ or WRITE. Itis
automatically incremented by one after each system call. In order to
process random files, use the POSN call to direct TRSDOS to the
record you wish to transfer next.

ERN Ending Record Number is the last record number currently
in the file. It is put into the directory at CLOSE time, so if it is
expected to be correct, the user must close his files after adding
records to a file. This value may also be used to position to end of
file so that new records may be added to the end of the file. To
position to the end of file use a call to POSN with a record number
of ERN+1. POSN is described later.

6-6

TRSDOS Technical Information

Physical and Logical Records in TRSDOS

A physical record is defined as one sector of disk. One sector of disk
contains 256 user data bytes. The artificial term “‘granule” is
defined to be 5 sectors of disk space. There are 2 granules on each
of the 35 tracks on the disk. A granule is the least amount of space
allocated by TRSDOS. For programming purposes, the physical
records in a file are numbered from O to N. The largest record
number (N) in a file will then be five times the number of granules
allocated minus one ((5*G)—1). All TRSDOS granule allocations

are made as needed at the time of write, not when the file is

created.
Bytes Sectors Granules Tracks Disk
256 1 — - —
1280 5 1 — -
2560 10 2 1 —
89600 350 70 35 1

Disk Space Table : For each 5-1/4” Disk Drive

A logical record is defined by the user of TRSDOS. It may be
anywhere from 1 to 255 bytes in length. Once a file is opened with
a specific LRL (Logical Record Length), the length is fixed until
the file is closed. To change a file’s LRL, you must CLOSE it and
re-OPEN it with the new LRL.

Each opening of the file sets a single, fixed record-length.
TRSDOS will “block” logical records into (or from) one physical
record for maximum space utilization on the disk.

Blocking is putting more than one logical record into one physical
record. For instance, four 64-byte logical records will fit into one
256-byte physical record. A logical record may be broken into two
parts by TRSDOS in order to fill the last portion of one physical
record entirely before beginning to use the next physical record
(i.e. records are spanned). This occurs when the physical record
length is not an even multiple of the logical record length.

If the user wishes to do his own blocking, he may specify a logical
record length of O bytes at the time of INIT/OPEN and must himself
manage the contents of the physical record buffer area of 256 bytes.
TRSDOS will not move a logical record for the user if LRL=0; in
this particular case it will only read/write the physical record
to/from the buffer.

6-7

TRSDOS Technical Information

Fundamental TRSDOS 1I/0 Calls

There are eight fundamental TRSDOS routines involved in handling
file I/O. These are:

INIT Creates a new file in the directory and opens it.
. No granule allocation is done.
OPEN Opens an existing disk file.

POSN Position for reading/writing a particular logical
record.

READ Reads one logical record into RAM from disk or
from the physical buffer.

WRITE Writes one logical record from RAM onto disk or
into the physical buffer.

VERF Writes then verifies by reading back and comparing
to the original data written from RAM. Only
pertains to LRL=0 physical records.

CLOSE Closes an open file.

KILL Closes a file and erases it from the directory.

The detailed calling sequences and discussions for each of these routines
follow. Note that all of these system calls use register F and do not
restore its value before return. In order to properly apply this data,
you should read through all of these descriptions and clear up all of

the points that are not obvious to you by using other reference
materials. If you are successful in doing this you will find that
TRSDOS is a workable tool for your programming ideas. The jump
vectors supplied here and the descriptions especially pertain to
TRSDOS Version 2.1 only. Future releases of TRSDOS may alter
some of these descriptions or addresses.

INIT (jump vector = X’4420°)
INIT is provided as an entry point to TRSDOS which will
create a new file entry in the directory and open the DCB
for this file. INIT scans the directory for the filespec name
given in the DCB. If the filespec name is found, INIT
simply opens the file for use. If the name is not found,
a new file is created with the filespec name.

entry: HL=>BUFFER (see beginning of this section for notation)
DE=>DCB
B=LRL
CALL 4420H
exit: Z=0OK
C carry flag is ON if a new file was created
A=TRSDOS error code. (Error codes listed at end of
this chapter)

6-8

TRSDOS Technical Information

OPEN (jump vector = X’4424’)
OPEN provides a way to open the DCB of a file which
already exists in the directory. The DCB must contain
the filespec of the file to be opened before entry to OPEN.

entry: HL=> BUFFER
DE=> DCB
B= LRL
CALL 4424H
exit: 7=0K
Z=0 if file does not exist.
A=TRSDOS error code.

POSN (jump vector = X’4442’)
POSN positions a file to read or write a randomly selected
logical record. Since it deals with logical records, the
proper computation is done to locate which physical
record(s) contain the data. Following a POSN with a
READ or WRITE will transfer the record to/from RAM.

Note that positioning to logical record zero sets the file
to read the first logical record in the file. To position to
end of file in order to add new records onto the end, use
the record number ERN+1 (see page 2).

entry: DE=> DCB (must have been opened previously)
BC= Logical record number to position for.
CALL 4442H

exit: Z=0K
A=TRSDOS error code.

READ (jump vector = X’4436’)

If LRL>0, READ transfers the logical record whose number is
in the DCB as NRN (see page 2) into the RAM area
addressed as UREC for the length LRL as defined at open
time. The record comes from the RAM BUFFER defined
at open time. If TRSDOS must read a new physical record
to satisfy the request, it will do so. ““Spanned” logical
records will be re-assembled as necessary. READ auto-
matically increments NRN by one in the DCB after the
transfer is completed. INIT/OPEN sets NRN=X'0000" in
order to read the first record with the first READ.

If LRL=0, READ transfers one physical record into the RAM
BUFFER, which was defined at open time, from the disk
file. Registers HL are ignored. READ increments NRN
as above.

6-9

TRSDOS Technical Information

6-10

entry: HL=> UREC if LRL is not zero. Unused if LRL=0.
DE=> DCB
CALL 44364
exit: Z=0K
A=TRSDOS error code. (EOF=X"1C" or X"1D’)
(see errors 28,29 for EOF or NRF)

WRITE (jump vector = X’4439’)

IF LRL>0, WRITE transfers the one logical record from
the RAM area addressed as UREC for the length LRL as
defined at open time. The record goes into the RAM
BUFFER which was defined at open time. If TRSDOS
must write a physical record in order to satisfy the
request, it will do so. “Spanning’ will be handled by
TRSDOS as necessary. At INIT/OPEN time the DCB
value of NRN is set to X'0000" so that the first record will
be written. After each logical record is transferred, the
NRN value in the DCB will be incremented by one.

IF LRL=0, WRITE transfers one physical record from the RAM
BUFFER into the disk file using the NRN in the DCB.
BUFFER IS DEFINED at INIT/OPEN time only. The DCB
value NRN is updated as above, after the WRITE.

entry: HL=> UREC if LRL is not zero. Unused if LRL=0
DE=> DCB
CALL 4439H

exit: Z=0K
A=TRSDOS error code.

VERF (jump vector = X’443C’)
The only difference between VERF and WRITE is that
VEREF writes one physical record to disk and then reads
it back into a special TRSDOS RAM area not defined by
the user. This special area and the original write buffer
are then compared byte by byte to assure that the record
was successfully written.

entry: HL= > Same as WRITE above.
DE=> DCB
CALL 443CH

exit: Z=0K
A=TRSDOS error code.

TRSDOS Technical iInformation
R B R R S R I R R T R R R R A R R G B R N5 R BRI A

CLOSE (jump vector = X’4428’)
CLOSE closes a file from the last processing done. It is
very important to do a CLOSE on every file opened before
the program ends. If you do not close a file, the directory
entry for this file is incorrect if any new records have been
written into the file. Other cases are not given here, but it is
very important to TRSDOS that all of the “housekeeping”
is complete for file management.

entry: DE=> DCB
CALL 4428H
exit: Z=0K
A=TRSDOS error code.

KILL (jump vector = X’442C’)
KILL deletes the directory entry for an open file and then
completes the close on the DCB. The disk space released
by the old file is now re-useable for other purposes.
Otherwise KILL is the same as CLOSE.

entry: DE=> DCB
CALL 442CH
exit: Z=0K
A=TRSDOS error code.

Supplementary Information

Other routines and addresses which may be of interest are defined
here. Pay particular attention to the error routine. It does NOT
perform error recovery. It displays TRSDOS error messages on the
video display.

(1) CALL402DH — Normal return to TRSDOS at program end.

(2) X’'4318": address of the 64-byte buffer that contains the
last TRSDOS command that was entered. Useful
to decode special parameters entered when
program was executed (run).

(3) If HL => &-byte buffer, then:
CALL 446DH returns the time of day into the 8 bytes
in the ASCII format — HH:MM:SS
CALL 4470H returns the date into the 8 bytes in the
ASCII format — MM/DD/YY

Binary forms of the time and date are located in TRSDOS
RAM at these locations:
X’'4040’ clock — real time clock heartbeat count. 25ms.
X’4041’' time — binary — 3 bytes — sec,min,hrs
X'4044' date — binary — 3 bytes — yr, day, mon

6-11

TRSDOS Technical Information
[e e e o e e e]

(4) Printing TRSDOS error codes on the video display.

CALL 4420H Example of system I/O call. Any call
is ok. Zero flag not set means an error
has occurred during the 1/O attempt.

JR 2,0KGO Ignore error message display if no
error.

OR 80H Optional for detailed error message.
Register A already contains proper
code for a single line message display.

CALL 4409H Display error message on video screen.

Optional user error recovery code goes here

OKGO continue with program here - - -

TRSDOS Error Codes — Returned in Register A

decimal prob. error
number causes™ description
00 — No error
01 MD Parity error during header read
02 D Seek error during read
03 XK Lost data during read
04 MD Parity error during read
05 FMD Data record not found during read
06 P Attempted to read system data record
07 P Attempted to read system data record
08 UpP Device not available
09 MD Parity error during header write
10 D Seek error during write
11 XC Lost data during write
12 MD Parity error during write
13 FMD Data record not found during write
14 XD Write fault on disk drive
15 UDX Write protected diskette
16 PS Illegal logical file number (dcb bad)
17 MPDS Directory read error
18 MPDS Directory write error
19 UP Illegal file name (dcb bad)
20 MPDS GAT read error (Granule Allocation Table)
21 MPDS GAT write error
22 MPDS HIT read error (Hash Index Table)
23 MPDS HIT write error
24 Uup File not in directory
25 UP File access denied (protection violation)

*See Explanation, next page.

6-12

TRSDOS Technical Information

decimal prob. error

number causes description
26 UpP Directory space full (48 files max)
27 UP Disk space full (70 granules max)
28 P EOF encountered (End Of File)
29 P NRF (No Record Found) out of file range
30 Up Full directory. File can’t be extended.
31 UpP Program not found
32 UP Illegal drive number specified
33 UP No device space available for new device
34 MPUS Load file format error. Not a program.
35 XCS Memory fault
36 PUXC Attempted to load ROM memory
37 P Illegal access attempted to protected file
38 UuP File has not been opened
39-62 Not defined yet. Reserved
63 P Unknown error code

Explanation of probable cause codes: (column 2)

C =TRS80 CPU fault
D = Disk drive fault

P = User program error
S = TRSDOS fault. Reboot

F = Diskette not formatted U = User procedural error
M = Diskette media fault X = Expansion Interface fault

6-13

DISK
BASIC

omoOrrCcCoH2Z2er

Contents of This Section

Introduction 2
Enhancementsto LEVELIl 5
Disk Features 26

File Manipulation 28

File ACCESS i 33
Sequential Access Techniques 60
Random Access Techniques 65
DISKBASIC ErrorMessagesc.couu... 77

Section 7 - Page 1

DISK BASIC

Introduction

DISK BASIC is a set of enhancements to LEVEL II BASIC, plus
features to allow disk input/output of BASIC programs and data.
It is a memory image file stored on the TRSDOS software diskette
with the name BASIC and extension /CMD.

When DISK BASIC is loaded into RAM, it automatically takes
control of the LEVEL 11 BASIC ROM program, using almost all of
its routines and adding others. This is possible because LEVEL II
was designed with upward compatibility built-in. (You can see this

by examining the memory map for LEVEL II, in particular, hex
addresses 37DE-37EC.)

When loaded, DISK BASIC occupies approximately 5.8K bytes of
RAM, beginning at hex address 5200 (decimal 20992).

To load and execute DISK BASIC, first power-up the Disk Operating
System (see System Operation), so that

[0S READY
is displayed. Now type:

ESSSM ENTER

TRSDOS will load BASIC into RAM, and BASIC will begin the
“initialization dialog”. This is a series of questions and answers
which tell BASIC how to organize memory according to your needs.

The first question is,

HOW MANY FILES?

You repond with the maximum number of disk files that will be
open (in use) at any one time — any number from zero to 15.

(Every program or data set you store on the disk is referred to as a
“file””. In fact, everything on the disk, including system software,
exists in the form of files.)

The number you enter tells BASIC how many disk 1/O buffers and
data control blocks to create (for definitions, see Glossary). If n files
are to be in use at once, then n buffers will be required. Each buffer
will take 290 bytes from your available RAM (256 for the buffer plus
34 for a data control block [DCB]), so don’t enter an unnecessarily
large number.

If you simply press [@AVRIA3] without entering a number, BASIC
will use a default value of 3; so you’ll be able to have 3 file buffers
in use at once.

7-2

DISK BASIC

Note: DISK BASIC automatically creates a buffer for loading, saving
and merging BASIC programs. This buffer exists in RAM below

any data file buffers you may request. It is always available for
program 1/O, regardless of how you answer the FILES? question.

Suppose you’re going to be using 2 files: 1 for inputting data,

1 for outputting data. Then you might answer 2 to the FILES?
question. However, if only 1 of these files will be open at once, then
you really only need to reserve 1 file buffer/control block.

Examples:

HOW MANY FILES? 8 (SR

causes BASIC to set aside zero buffers for I1/O to disk files. You
won’t be able to open files, but you will have the maximum amount
of RAM for use by your program.

HOW MANY FILES? 15 [EVEEA

tells BASIC to create 15 I/O buffers and control blocks; you will
then be able to have 15 files open at once; however, this will reduce
your available memory by 15%290 = 4350 bytes.

HOW MANY FILES? (SRR

tells BASIC to use a default of 3 for the number of files to be in use
at once.

After you answer the FILES question, BASIC will ask:
MEMORY SIZE?

You respond with the highest memory address (in decimal form) you
want BASIC to use for storing and executing your BASIC programs.
Addresses above the number you specify will then be protected

from use by BASIC.

Here’s why you might want to protect memory:

You can load machine-language programs or routines into high
memory, and then access these routines from DISK BASIC via
specially defined USRn functions, or via the SYSTEM command.
These machine language routines may be loaded from tape using the
SYSTEM command, LOADed in the DOS READY mode, or placed
in memory one byte at a time using either DEBUG or BASIC POKE
commands. If you do not reserve memory, such routines will be
destroyed during execution of BASIC statements.

7-3

DISK BASIC

Example:
MEMORY SIZE? 32 ENTER
causes BASIC to protect addresses above 32000. If you have 16K

of RAM, this means that you’ll have 32767-32000= 767 bytes
protected for storing your machine language routines.

If you don’t want to reserve any memory, just press [JURE3
without typing a number.

MEMORY SIZE? [R5

You will then have the maximum amount of RAM available for use
by BASIC.

Refer to the Memory Map for decimal addresses of the various
TRS-80 memory configurations (16K, 32K, 48K).

After you answer the MEMORY SIZE question,

RADIO SHACK DISK BRASIC VERSIOW 1.1
READY
>

will be displayed. You are now operating under DISK BASIC.

To exit BASIC and return to the DOS READY mode, type:

(MU ENTER

This results in a normal return to DOS — without re-initialization of
the system. If you have a BASIC program in RAM, it will be lost, so
be sure to save it on disk or tape before using CMD"'S".

7-4

DISK BASIC

Enhancements to LEVEL II BASIC

DISK BASIC adds many features to LEVEL II which are not disk-
related. They are listed below along with abbreviated descriptions.
Detailed descriptions follow in alphabetical order.

&H Hexadecimal-constant prefix
&O Octal-constant prefix
CMD"D"” Enable and load the real-time debugging program
CMD"'R" Enable interrupts (start real-time clock)
CMD"'S"” Normal return to TRSDOS (jump to EXIT routine)
CMD"T" Disable interrupts (turn off real-time clock)
DEF FN Define an implicit BASIC-statement function
DEF USR Define the entry point for an external
machine-language routine
INSTR Instring function; find substring in target string
LINE INPUT Input a line from keyboard
MIDS$= Replace portion of target string (used on left
of equals sign)
TIMES Get time and date from real-time clock
USRn Call external routine (»=0,1,2,....,9)

Cassette Operations

Before any BASIC cassette input or output operation, you must
disable interrupts with the CMD"'T” command. This is because such
cassette operations are timing-sensitive and cannot work if they are
being interrupted every 25 milliseconds. When the cassette operation
is complete, you can re-enable interrupts by executing the statement
CMD""R".

CLOAD allows no filename in DISK BASIC. Therefore you cannot
use such a filename to sort through several tape files. CLOAD will
always load the first file encountered on the tape. CSAVE, however,
still requires the filename. This way, programs CSAVEd under
DISK BASIC can be loaded and sorted through via the LEVEL 11
CLOADfilename” command.

CLOAD? (CLOAD-verify), used in LEVEL 1l to compare a BASIC
program in RAM with one on tape, will not work with programs
saved on tape under LEVEL II. It will work with programs saved
under DISK BASIC.

7-5

DISK BASIC

Error Messages

When an error occurs, DISK BASIC “‘spells out” the full error
message, not just the abbreviation. This saves you from having
to look it up.

Example:

UG CYE ENTER
DISK BASIC responds with:

0T OF STRING SPACE

Note: The ERROR function, used to simulate error conditions, will
work only with non-disk error codes.

&H and &0 (hex and octal constants)

Often it is convenient to use hex (base 16) or octal (base 8)
constants rather than their decimal counterparts. For example,
memory addresses and byte values are easier to manipulate in hex
form. &H and &O let you introduce such constants into your
program.

&H and &O are used as prefixes for the numerals that immediately
follow them:

&Hdddd
where dddd is a1 to 4 digit sequence composed of
hexadecimal numerals 0,1,...9,AB,... F.
&Oddddd
where ddddd is a sequence of octal numerals 0,1, ...,7.

and &Oddddd< =177777 decimal.
Note: The O can be omitted from the
prefix &0O. Therefore &Oddddd=&ddddd.

The constants always represent signed integers.

Therefore any hex number greater than &H7FFF, or any octal
number greater than &077777, will be interpreted as a negative
quantity. The following table illustrates this:

Octal Hex Decimal
&1 &H1 1
&2 &H?2 2
&77777 &H7FFF 32767
&100000 &HB8000 -32768
&100001 &HS8001 -32767
&100002 &HB8002 -32766
&177776 &HFFFE -2
&177777 &HFFFF -1

7-6

DISK BASIC

Hex and octal constants cannot be typed in as responses to an
INPUT prompt or be contained in a DATA statement. Often the
hex or octal constant must be enclosed in parentheses to prevent a
syntax error from occurring.

Examples:
FRINT &HS208, £051666

prints the decimal equivalent of the two constants (both equal
20992).

POKE &H3CHE, 42

puts decimal 42 (ASCII code for an asterisk) into video memory
address hex 3CO00.

166 FOR I=CEHZCEE)> TO (&HZFFF) STEP (&H4@)
268 IF A=C&HZPES) THEN A=RA+1

IBE POKE AX, (XX AND &HFFD

Masks the most significant byte of X% and POKEs the result into
location A%.

CMD*“D” (execute DEBUG program)

CMD"'D”

Executing this statement causes the TRSDOS debugging program to
load and execute. (See TRSDOS Commands, DEBUG.) Your BASIC
program is unaffected, since DEBUG loads below DISK BASIC.

To return to BASIC without re-initialization, type
IMENTER

The READY message will appear and you can continue in BASIC.

Once CMD"’D" has been executed, DEBUG will take over whenever
you press the BREAK key. Pressing G will return you to
BASIC again. Type CONT to continue any program that was
executing when you typed BREAK.

To return from DEBUG to the BASIC initialization sequence, type
G5200 @4 . You will lose any BASIC program text or
variable values.

7-7

DISK BASIC

Examples:
166G - PROGRAM: DEBUG

116 ¢ EXAMPLE OF EXECUTION WITH DEBUG WITHIM A FROGEAM
128 -

138 CLZ: PRINT TREC1S);: “"DEBUG EXAMPLE": PRINT

148 PRINTENTERING DEBUG"

158 FOR I=1 TO S868: HEXT I ‘DELAY A WHILE

ie@ -

178 7w ENTER DEBUGGING PRCEAGE 4+

is@ -

198 CHMDvDT

208G 7

246 7wk FETURH HERE WHEN "G" EMTER TYPED IM DEBUG ##:
228 7

238 CLS: PRINT: PRINT "YOU HAYE RETURNED FROM DEBUG"
248 END

DEBUG EXAMPLE

EMTERING DEEUG

7-8

DISK BASIC

42 =N
S7 43 5
44 22
363 55
ZAHLPNC
oS5t

Hoi
ot

DN RN
xx

XS o s B g O w i n
2

o
!

o0

Dt =%
LS I)
D <N
o Im
1% S £
Tk

m o
o T

T R
T}
g
-n
-
L
-1 ?
ST A
D)
1!

.
1

"

!
-,
o

3

m
[
nomd
Som
b

_i

Lo

oo
Lo

S

wononon
ORI N < Wiag i _{: Ty T L

L5 %)
il

S in

P U B B B v B Y N

=
!

[00 o o BTSN B R

1 b T g
Aoy RN
s LR)

!
-
!
o
2!
—
a

Won o

o 0
m %

s T R I s B s I

A, x > i
7 el R0
o fa Led B

Y] .E. O b b (5

o R IS < O I

=
!
S O

ot
ot

P I Lt o B

SN (RO)
WA B

iou

] RO o
-
=

[o s P i B S U
R I O e B S O

"t
%

N
Doul

- T oS R S0 Ty oo e

SR

W
L

1
o

w5 T g

LR]

9

=
XN

Ll
et DT P e OO g [T

G0 T Ty
[o xR L I

IR R KN

I e R ORI N

|._'
=
=

P om0 Ja e OO
[ORI - PO B

HOE
i C
a1
(Y
B oA

ORI =]
<N

T b Bl o

l’:.:! If!

HES S

o
-
ERA
=
o
L
-
X
[od)
[

YOU HAVE RETURNED FROM DEBUG
READY

7-9

DISK BASIC
L L~~~ "]

CMD*“R?” (start clock [enable interrupts])

CMD*“R” -]

Execute this command immediately after completion of a cassette
input/output operation to re-start the real-time clock. See CMD"'T"".

CMD*S” (return to TRSDOS)

CMD"S"

Execute this command to initiate a normal return to the Operating
System command mode. This will not re-initialize the system, but
merely get you out of BASIC.

Be sure to save any BASIC program on disk or tape before using
CMD"'S", as your resident BASIC program will be lost.

CMD“T” (stop clock [disable interrupts])

CMD”“T”

You must execute this command immediately before any BASIC
tape input/output operation. Such operations are timing sensitive

and cannot allow the interrupt-driven tasks (such as the real-time
clock, TRACE, and CLOCK-display) to ‘“‘steal” time.

Here are the commands which must be preceded by execution of

CMDIITII :
CLOAD CLOAD?
INPUT #-1 CSAVE
INPUT#-2 PRINT #-1
SYSTEM PRINT #-2

After completion of these operations, you can execute a CMD"R"
to re-enable interrupts.

Example:
16 OPEN"1". 1. "TEST/BA

Sll
26-CHDUT": INPUTHL A.E.C
@ CHDUR®

7-10

DISK BASIC

Note: After CMD”’D”, you can use CMD"'T" to prevent BASIC from
transferring control to the DEBUG program when BREAK is pressed.

DEF FN (define function)

DEF FNvari(var2{,var...])=exp

where var! will be the name of the function, and is any
valid LEVEL II variable name
var2 and subsequent var-items are
used in defining what the function does
exp is an expression usually involving the variable(s)
passed on the left of the equals sign

This statement lets you create your own implicit functions. That
is, you only have to call it by name and the implicit function you
defined will automatically be performed. Once a function has been
defined with the DEF FN statement, you can call it simply by
referencing the function name prefixed by FN. You can use it
exactly as you’d use one of the intrinsic functions, e.g., SIN, ABS,
STRINGS.

The type of variable used to name the function determines what type
of value the function will return. For example, if the function name
has the single-precision attribute, then that function will return a
single-precision value — regardless of the precision of the arguments.

Examples:
DEFFHA$CTITLES, GRAPHICSH »=STRINGE(LENCTITLES), GRAPHICSH

The function AS$ will require two arguments — one integer, one
string; and it will return a string value.

DEFFNRC! (Ry=1/(A*HD

The function RC! requires one argument, and returns a single-
precision value, regardless of the precision of the argument.

The particular variable names you use as arguments in the DEF FN
statement are not assigned to the function; when you call the
function later, any valid variable name of the same type can be
used. Furthermore, using a variable as an argument in a DEF FN
statement has no effect on the value of that variable.

The function must be defined with at least one argument — even if
this argument is not actually used to pass a value to the function.
For example:

DEF FNRCA)Y=RND(@)>

DISK BASIC

Examples:
18 DEFFHMLTCH. BO=R+E
28 THRUT "ENTER ARGUMEMTZ": &Y
@ PRINT "PRODUCT TS": FMMLT O Y2

Notice that FNMLT is defined with arguments A B, but that when
the function is called in line 30, variables X and Y are used. Any
two valid variable names can be used to pass values to the function.

DEF FHNRRCA, Br=A+ TNTCBeRNDOEY Returns a random
number between
A and B.

DEF FHLESCR)=LEFT$#IRE. 53 Returns first 8
characters of string
argument

DEF FHA#CA#, B# O =CR#-BH I+ R#-BH#) Returns double-

precision value of “‘the
square of the
difference”

[acx]
bl

FROGEAM: STRING
7 ESAMFLE OF A STRING DEFFN FUNCTION

ot
SOV

"
X

* kot FUNCTION TO CONCRTENATE STRINGS s

S dal L) D b (%

LEF FNADDS (A$. E$) = RF + " " + B3

CLE: FRINT TAB(1S); "STRING DEFFN EXAMPLE"
FRINT: F$="": INPUT "ENTER FIRST HAVME": F%
IF F$="" THEN END

3 INFUT "ENTER LAST NAME": L%

1

DA
LI oC B ot S o B T B

-, -
OV I A I At

,.
AN

Skt FDD FE TOOLE WITH 4 BLANE IN BETMEEN sttt

I N ol el ol ol e =l R NN

Lo R L0 0 e Ty

2% = FHNRDDE CF$. L¥D

—
Dol

228 PRINT TRECE): "FULL WAME: “: 2%
23R GOTO 1ed

STRING DEFFH EXRMFLE

ENTER FIRST HAME? JoHN EYLED
ENTER LAZT HAME? DOE [SARR3L
FULL HAME: JOHW DOE

7-12

DISK BASIC

‘ FROGREAM: MINMAS
“ E¥RMFLE OF DEFFW FEATURE

fan
=
PUN A

“ wdwrkkk DEFINE MIN AND MAX FUNCTIONS #astnts

[os IO { B o

DEF FHMIM (R, B3
DEF FHMAR A, B2

+ B -
+ B+

- Bax 4
- By &

T

S I N PR I P B T N

o
1
“

B
AES

non
T
XX
U A
Il Il
P opa

[en

1
178 7 sdssetssk RERD 15T WALUE - CALL IT THE MIM AND MAK sk
ige 7 MM IS CURRENT MINIMUM YALUE
i?@ ! Me IS CURRENT MAKIMUM VYALUE

21a PEHD MH: MA = MN

2387wtk GET NEXT WALUE AND FIND HEW MIHATRE s
246 7

258 READ VO IF W = 29999 THEW 228 7v=995333 MEANS ALL DONE
G OMH = FHMIM CMM. W2 “GET NEM MIMNIMUM

B OME = FHMAR (M W0 “GET NEMW MAHIMUM

a6 GOTO 256

R 5 £ TR TR R P FRINT FESULTS ssdeddgok

FEINT "MINIMUM YALUE =", MW
PRINT THASIMUM YALUE =", Md

EEE 7 ek DRTH FOLLOWS - LAST WALUE MUST BE 39993 sdsbstet

RN
MINIMUM YRLUE
MASIMUE YRLUE

1. 7% 206 % 5 4 9999 @

MINIHUM YALLE
WA IHUM YALUE
RERDY

>

DISK BASIC

DEFUSR
(define entry address for USR routine)

DEFUSRn=nmexp

where n equals one of the digits 0,1,....9;
if n is omitted, O is assumed
nmexp specifies the entry address to a
machine-language routine.

This statement lets you define the entry points for up to 10 machine-
language routines. (In LEVEL II, where only one USR routine is
available, the entry point address is POKEd into RAM.)

Example:
1686 DEFUSRZ=8H7Do@

Assigns the entry point 7D00 hex, 32000 decimal, to the USR3 call.
When your program calls USR3, control will branch to your sub-
routine beginning at hex 7D00.

Here are three ways to get a machine language program into RAM so
that it can be accessed via a USR# call:

1) Use the TRS-80 Editor Assembler, Radio Shack Catalog
Number 26-2002, to convert the source code into an object
file on tape; then load the tape under the SYSTEM
command (use MEMORY SIZE to protect the code from
destruction by BASIC).

2) Use the TRSDOS DEBUG program to type in the machine-
code routine (then DUMP it to disk for safe-keeping);
call DISK BASIC and answer MEMORY SIZE so as to
protect the routine.

3) Have your DISK BASIC routine POKE the routine (decimal
values for each byte) into high RAM. MEMORY SIZE
should be set during initialization to protect the area you
will POKE into.

See USRn.

7-14

DISK BASIC
o et R T e S R R G LR T L BT R T S S N S R e S U e e

INSTR (string search function)

INSTR([n,] expl8.,exp2$)

where n specifies a position in exp1$ where the
search is to begin; if n is not supplied,
1 is assumed. (Position 1 is defined as
the first character in the string.)
expl$ is the string to be searched
exp2$ is the substring you want to search for

This function lets you search through a string to see if it contains
another string. If it does, INSTR returns the starting position of the
substring in the target string; otherwise zero is returned. Note that
the entire substring must be contained in the search string, or zero

is returned. Also note that INSTR only finds the first occurrence of
a substring, starting at the position you specify.

Examples (let A$=""ABCDEFG"):

Expression Result
INSTR(AS$,“BCD™) 2
INSTR(AS$,”12") 0
INSTR(AS,”ABCDEFGH") 0
INSTR(3,71232123","12"") 5

See the EDIT program under MID$= for a sample use of INSTR.

7-15

DISK BASIC

LINE INPUT (input a line from keyboard)

LINE INPUT(["prompt"| war$

where prompt is a prompting message

varg is the name that will be assigned to the line you
type in

LINE INPUT (or LINEINPUT — the space is optional) is similar to
INPUT, except:

®* When the statement is executed, and the Computer is waiting for
keyboard input, no question mark is displayed

¢ Each LINE INPUT statement can assign a value to just one variable

* Commas and quotes will be accepted as part of the string input

® Leading blanks are not ignored — they become part of var3

* The only way to terminate the string input is to press

LINE INPUT is a convenient way to input string data without having
to worry about accidental entry of delimiters — because only the

key serves as a delimiter. If you want anyone to be able to
input information to a program without special instructions, use
LINE INPUT and then analyze the resultant string.

Some situations require that you input commas, quotes and leading
blanks as part of the data. LINE INPUT serves well in such cases.

Examples:
LINE IMPUT A%
Input AS$ without displaying any prompt.

LINE INPUT"LAST MWAME. FIRST NAME?"; N$
Displays a prompt message and inputs data. Commas will not termi-

nate the input string.

Try the following program to get the idea of LINE INPUT.

168 - FROGRANM: LNINPUT
118 ¢ EXAMFLE OF LINEINPUT STATEMENT
126

1%6 CLERR Z86: CLS
146 PRINT TAB(LS)>; “LINE INFUT STHTEMENT": PRINT
158 PRINT: PRIWT "sdd ENTER TERT #oks!

151

152 7 #4k GET STRING, THEN PRINT IT ek
153 7

155 A$="" “SET A% TO HNULL STRING

7-16

DISK BASIC

166 LINEIHPUT “==3 " A¥)

155 IF A$="" THEN END “IF STILL HULL STRING. STOF!
176 PRINT A%

126 GOTO 455

LINE IHFUT STRTEMENT

> LINE FEEDS FAND THES
ALSD ALLOWS DELIMITER ¢ %7 ETC) EWE

THIZ TEXT HAS EMEEDDED LINE FEEDS AND TARES

IH IT. LIMEINPUT ALSO ALLOWS DELIMITER < ;"7 ETCH
== XA

READY

MID$= (replace portion of string)

MIDS(var$ ni{,n2])=exp$

where pgr$ names the string to be changed
nl specifies the starting position for the
replacement
n2 specifies how many characters are to be
replaced; if n2 is omitted, LEN(exp$) or
LEN(var$)-nl+1 is used, whichever is
smaller.

This statement lets you replace any part of a string with a specified
substring, giving you a powerful string-editing capability.

Note that the length of the target string (var$) is never changed by
the MID$= statement. If the replacement string, exp$, is too long
to fit in the specified portion of var$, then the extra characters at
the right of exp$ are ignored.

DISK BASIC
R A . S R S e S PO M8

However, if you specify the number of characters to be replaced,
and this number is larger than the replacement string, then the
length of the replacement string overrides the length you specified.

A$="ABCDEFG" at the beginning of each example below:

Ex. # Expression Resultant A$
1 MIDS$(AS$,3,4)="12345" AB1234G
2 MIDS$(AS$,1,2)="" ABCDEFG
3 MIDS$(AS$,5)="12345" ABCD123
4 MIDS$(AS,5)="01" ABCDO1G
5 MIDS$(AS$,1,3)=""#%%"" ***DEFG

In example 2, the specified replacement length exceeds the length
of the replacement string (which is zero); therefore the replacement-
string length is used. In effect, no characters are replaced.

Sample program: EDIT

This program accepts an initial string, asks for a replacement position
and a replacement string. Then it performs the MID$= replacement
and prints the new string. Type in a position equal to zero to stop
the program.

188 PREOGEARM: EDIT

118 7 ESAMFLE OF THSTR FUNCTION FOR TEAT EDITTIHG

115 -

128 CLEAR @a: CLs

130 PRINT TREC1S): " STRING-FUNCTION EDITOR"

135 ¢

14 7 stk GET IMITIAL TERT bbb

145 ¢

156 PRINT: PRIMT "ENTER INITIAL TEXT STRING®

Led SE="" LINE INPUT % IF S$="" THEN END

165 7 .

178 7 s GET THRGET & REPLACEMENT STRINGS st

1va

186 TE=""" PRINT: LIHE INPUT" THRGET STREING " T#

185 IF T#="" THEH END

190 LIME INFUT "REFLACEMEWT STRING " E$

195 IF LERCTH2CPLENCREFITHEN PRINTYCANST CHANGE STRING LEHGTH":
GOTO 128

288 7 kbt MAKE REFLACEMENT (S AND FEINT NEW STREIMG st

218 I=1 NARIABLE T POSITIONS TO BEGINMING POINT OF SERRCH

228 T=INSTECI, S#%. T#): IF I=8 THEN 158 1= IF HOT FOUND

26 MID$FCSE, 1r=R¥$ “MAKE REFLACEMENT

248 PRINT "POSITION - " 1. PRINT <%

256 T=T+LENCRS: . GOTOD zz@ THDVANCE POSTTION

7-18

DISK BASIC

RUN

STRING-FUNCTION ELITOR

T STRING

EMTER IWITIAL T

TARGET STRING p1sc EVHER
REFLACEMENT STRING DISK
POSITION - 9
CHRMGE "DISK" TO "DISK" EACH TIME IT OCCURS. (DISC=3DISKD
POSITION - 48
CHANGE "DISKY TO “DISK" EACH TIME 1T OCOURS (DISK=BDLISKS

ENTER INITIAL TEXT STRING

FERDY

TIMES (get value of Real-Time Clock)

TIMES

TIMES is a function with no arguments — when executed, it returns
a string-value composed of the date and time currently stored in the
Real-Time Clock memory area. The string is always 17 characters
long and has the following format:

MM/DD/YYWHH:MM:SS (month/day/year hr:min:sec)
The hour appears in 24-hour form, e.g., 1:30 PM appears as 13:30.

To set the time and date, get into the DOS READY mode and use
the TRSDOS commands, TIME and DATE, as follows (assume it’s

3:30 PM on January 1, 1979):

TIME 1%:Z26:68 [EVEG
RIS P ENTER

Or, you can set the time and date under DISK BASIC, by POKEing
the time and date values into the appropriate addresses (see TIME Coun r
CLOCK, TRSDOS Library Commands). s emren

TIMES$ can be printed or used internally by your program in dedicated
applications.

7-19

DISK BASIC

Examples:

1006 1F LEFT$CTINES, 15)="67/84/79 26 63" THEN 2604
1816 GOTO 1668

2BeE REM . IT<S 8PM ON JULY 4TH, 1379

Z@1@ REM. . START FIREWORKS DISFLAY

The following program, CLOCK, will display the time and date until
you press the @-key.

166 7 PROGRAM: CLOCK

118 © EXAMPLE OF TIME$

128 ¢

138 CLS: FRINT CHR$ (23) “GET INTO 32 CHARACTER MOCE
14a

156 ¢ sk PRINT TIME AND DATE s

166 7

178 PRINT @ 264, "THE TRS-88 TIME 15"

180 PRINT @ 452, "DATE: "; LEFT$ (TIME$, &)

190 PRINT @ 536, "TIME: ": RIGHT$ (TIME$, &)

@@ -

218 ¢ wkwsie STOR IF "@" KEY 15 DEPRESSED sttt
220 ¢

270 AS=INKEYS: IF A$ = "@" THEN END ELSE 18@

USRn (call to user’s external subroutine)

USRI[n](nmexp)

where n specifies one of ten available USR calls,
n=0,1,2,...,9. If nis omitted, zero is
assumed.
nmexp is in the range < -32768 +32767> and
is passed as an integer argument to the
routine

These functions (USRO through USR9) transfer control to machine-
language routines previously defined with DEFUSR#n statements.

When a USR call is encountered in a statement, control goes to the
address specified in the DEFUSR# statement. This address specifies
the entry point to your machine-language routine. A RET or JP
OA9A instruction in the routine returns control to the USR call in
your BASIC program.

7-20

DISK BASIC
L e e e S —

Note: If you call a USR#n routine before defining the routine entry
point with DEFUSR#n, an ILLEGAL FUNCTION CALL error will

occur.

You can pass one argument and retrieve one output value directly
via the USR argument; or you can pass and retrieve arguments
indirectly via POKE and PEEK statements.

Example:

18 DEFUSRA=&H7DEE
28 REM. . MORE PROGREAM LINES HERE
1688 A=USR1OD

The effect of this sequence is to:

1) Define USRI as a routine with an entry point at hex 7D00
(line 10)

2) Transfer control to the routine; the value X can be passed
to the routine if the routine makes the CALL described
below (line 100)

3) When the routine returns to BASIC, the variable A may
contain the value passed back from the routine (if your
routine makes the JUMP described below); otherwise A
will be assigned the value of X (line 100).

Passing arguments to and from USR routines

There are several ways to pass arguments back and forth between
your BASIC main program and your USR routines: the two major
ways are listed below.

1. POKE the argument(s) into fixed RAM locations. The
machine-language routine can then access these values and
place results in other RAM locations. When the routine
returns control to BASIC, your program can PEEK into
these addresses to pick up the “output’ values. This is
the only way to pass two or more arguments back and
forth.

2. Pass one argument to the routine as the argument in the
USRn call, then use special ROM calls to access this
argument and return a value to BASIC. This method is
limited to sending one argument and returning one value
(both are integers).

7-21

DISK BASIC
P

ROM Calls

CALL OA7FH Puts the USR argument into the HL register pair;
H contains msb, L contains Isb. This CALL should
be the first instruction in your USR routine.

JP 0A9AH Use this JUMP to return to BASIC; the integer in
HL becomes the output of the USR call. If you
don’t care about returning HL, then execute a
simple RETurn instruction instead of this JUMP,

Examples:
Listed below is an assembled machine-language routine that will

accept the argument from the USR call in BASIC, left-shift it one
position, and return the result to BASIC.

HalEe
BEiiE 5 SHIFT FUMCTION
asize
BaLza MACHINE CODE PROGRAM TO LEFT SHIFY
BEL4E AN ARGUMENT SEMT FROM BRSIC AND RETURN
aaise THE RESULT BARACK TO BRSIC
aaled ;
7haa aalve L] 7hEEH
aaiea
aa196 i EQUATES AND ENTRY POINTS
aazas ;
BRVF Gezie GETARG EQU BH7FH i GET ARGUMENT FROM BRSIC
BRIA aazz2e PUTANS EQU BASAH P FETURN ANSHER TO BRSIC
BEZEE
7h@a COYFER B@24@ SHIFT CALL GETARG s GET MUMBEE FROM BRSIC
7hEz CE1S BE25E6 FL L FSHIFT L
7heS CeE14 aazea FL H sSHIFT H - ANSKER IN HL
vhE7 CI9RBR Bezva JF FUTANS FRETURN TO BRSIC WY ANSHER
aezae
rhas BE256 END SHIFT

The following program includes the decimal code for the SHIFT
routine. The code is POKEd into RAM and then accessed as a USR
routine. RUN the program; to stop, enter a value of zero.

Note: The following two BASIC programs require that you reserve
memory addresses above 31999 for the USR Code. (Answer MEMORY
SIZE? with 31999.)

7-22

DISK BASIC
b "]

: FROGRAM: SHIFT
@ 7 MACHIME LANGURGE USER FUCTIOW TO LEFT SHIFT

P p e
[ORI o wcx)
DU

N
it
[sou on]

S opkdsbdk MACHINE CODE AT 7PDEER HEX dsktbkddks

[N
L B e
I m

DEFUSES = &HPDAO

&

O depdeddck POKE USER PROGREAM INTO MEMORY sstdstdos:

Ll R]

FOR = = 326086 TO I2ee% “7DeE HEX EQUALS Zzese DECIMAL
RERD A
FOKE “:H

HEAT =

DoURR v R B VRS
o S

]

S
ot

S ek GET WALUE FEOM USER #sbdubse

O O R I 0 T I T S ey B el =

HoUE ol

CLS: PRINT TAEC1S); "USRS LEFT-SHIFT FUNCTION"
FRINT: INFUT"ENTER INTEGER YALLE"; v

IF V=@ THEN END

FRINT "LEFT SHIFTED YALUE = "; TRECI2) USRSCW)

GOTO 278

P B oI o B o)
-

¢ wkirnn DATR 1S DEMICAL CODE FOR HEX PROGRAN ko

P A AT R R I R I
[ax]

Lad e bad bad Lot [u QL P

oo

&
DATR 265, 127, 18, 207, 21, 283, 28, 195, 154, 16

USRS LEFT-SHIFT FUNCTION

ENTER INTEGER YALUE? 7
LEFT SHIFTED WALUE = i4

ENTER INTEGER YALUE? =7
LEFT SHIFTED YALUE = o K

ENTER INTEGER YRLUE? 22767
LEFT SHIFTEDL YALUE = -2

ENTER INTEGER YALUE? @
READY

g

7-23

DISK BASIC

Listed below is an assembled program to white out the display (an

“inverse” CLEAR key!).

7haa

7hea
7haz
vDhas
7has

7DhaR

rbap
vhaa

This routine can be POKEd into RAM and accessed as a USR

21a630
I6EF
116420
B1FFEz
EDBG

Lo

C

routine, as follows.

7-24

aaiee
galia ;
aa1z2e ;

G126

aaEtdn ;
aEise
Aalen ;
aalvae v

Aalze
aa126

aazan ;
aazia ;
aaz2e ;

AE2za
aaz4e
BR2Ea
aazZed
a2y

Ba2ea

aEzaa
AnzEe

ZHF OUT SCREEN USE FUNCTION

FROGRAM CHRIN MOVES X7BF-

CHLY. WHITE
DE, ¥IDEC+1

i STHRT OF YIDEQ RAM
;ALL WHITE GRAPHICS BYTE
s NUMBER OF BYTES TO MOVE

INTO ALL OF YIDEQ RAM

i SO0URE ADDRESS

s PUT QUT 45T BYTE

; DESTINRTION ADDRESS
; NUMBER OF ITERATIONS
;DOIT TOOIT!H!!

s RETURN TO BRSIC

DISK BASIC
L e e e s S

ied - FPROGRAM: SR
116 7 E¥AMPLE OF R USER MACHINE LANGUAGE FUNCTION
14% 7 DEFRESS THE 87 KEY WHILE HUMBERS RRE FPRIWTING TO STOF

136 7 sttt POKE MACHINE FROGREAM INTO MEMORY ssdordson

156 DEFUSEL = SHYDEE
168 FOR X = Z2B@e TO 281z /7DheE HEY EOURL Z2e668 DECIMAL

176 READ A

136 POKE # A

196 NEXT ¥

192 *

194 7 wiskkiik CLEAR SCREEN & FRINT NUMBERS 1 THRU 108 ok
196 *

2@@ CLS
265 FRINT TREC(1S): "WHITE-OUT USER ROUTINE": FRINT
210 FOR % = 1 TO 166

Z28 PRINT %

225 A = INKEY$: IF R$ = "@" THEN END

230 NEXT ¥

[QR L]
[e 9
Doy I wv

ket JURF TO WHITE-QUT SUBROUTINE sstcbdordor

=
-

1 70 1@@6: NEAT « “DELAY LOOF

7 teerdebdck DRTH OIS DEMICAL CODE FOR HERX PROGRAM sk

AR)
~

Lod Ll Lol Led O PO PO T
RN AT el Y R s RS

CEE B4, 255047 1 el 1, 255, 3237 176, 281

D
g
o]
—
o
1ot
1.0
=
[e Y
o
X
2

RUN the program. An equivalent BASIC white out routine takes
a long time by comparison!

7-25

DISK BASIC

Disk-Related Features

DISK BASIC provides a powerful set of commands, statements and
functions relating to disk I/O under TRSDOS. These fall into two

categories:

1. File manipulation: dealing with files as units, rather than
with the distinct records the files contain.

2. File access: preparing data files for I/O; reading and
writing to the files.

Commands discussed under ““File Manipulation”:

KILL delete a program or data file
from the disk

LOAD load a BASIC program from disk

MERGE merge an ASCII-format BASIC

program on disk with one
currently in RAM
RUN*“program”™ load and execute a BASIC
program stored on disk
SAVE save the resident BASIC program
on disk

7-26

DISK BASIC

Statement and functions discussed under “File Access”:

Statements

OPEN Open a file for access (create the
file if necessary)

CLOSE Close access to the file

INPUT # Read from disk, sequential mode

LINE INPUT# Read a line of data, sequential
mode

PRINT # Write to disk, sequential mode

GET Read from disk, random access
mode

PUT Write to disk, random access
mode

FIELD Assign field sizes and names to
random access file buffer

LSET Place value in specified buffer

field, add blanks on the right
to fill field

RSET Place value in specified buffer
field, add blanks on the left
to fill field

Functions

CVD Restore double-precision number
to numeric form after GETting
from disk

CVI Restore integer to numeric form
after GETting from disk

CVS Restore single-precision number
to numeric form after
GETting from disk

EOF Check to see if end of file
encountered during read

LOF Return number of last record in
file

MKD$ Convert double-precision number
to string so it can be PUT
on disk

MKI$ Convert integer to string so it can
be PUT on disk

MKSS$ Convert single-precision number
to string so it can be PUT
on disk

7-27

DISK BASIC
.~ "]

File Manipulation
KILL (delete a file from the disk)

KILL exp$

where epx$ defines a file specification for an existing file

This command works like the TRSDOS KILL command — see
TRSDOS Library Commands.

Example:
KILL"OLDFILE/BRS. PSW1
deletes the file specified from the first drive which contains it.

Do not KILL an open file, or you may destroy the contents of the
diskette. (First CLOSE the open file.)

LOAD (load BASIC program file from disk)

LOAD exp$ [,R]

where exp$ defines a filespec for a BASIC program file stored
on disk

R tells BASIC to RUN the program after it is
loaded

This command loads a BASIC program file into RAM; if the R
option is used, BASIC will proceed to RUN the program
automatically; otherwise, BASIC will return to the command
mode.

LOAD without the R option wipes out any resident BASIC program,
clears all variables, and closes all open files. LOAD with the R
option deletes the resident program and clears all variables, but does
not close the open files.

LOAD with the R option is equivalent to the command RUN exp$,R.
Either of these commands can be used inside programs to allow
program chaining — one program calling another, etc.

If you attempt to LOAD a non-BASIC file, a DIRECT STATEMENT
IN FILE or LOAD FORMAT ERROR will occur.

7-28

DISK BASIC

Examples:

LOADPROG1/BAS:2" Clears resident BASIC program and
loads PROG1/BAS from drive 2;
returns to BASIC command mode.

10 REM...INSTRUCTIONS Example of chaining two programs
— the first may be used to give
instructions and then to load the
“working” part of the program

1000 LOAD”PROG2/BAS",R (PROG2/BAS). Note that line
1000 is equivalent to:

1000 RUN“PROG2/BAS"’

MERGE
(merge disk program with resident program)

MERGE exp$

where exp$ defines a filespec for an ASCII-format BASIC
disk file, e.g., a program saved with the
A-option.

MERGE is similar to LOAD — except that the resident program is
not wiped out before the new program exp$ is loaded. Instead,
expd is merged into the resident program.

That is, program lines in exp$ will simply be inserted into the
resident program in sequential order. If line numbers in exp$
coincide with line numbers in the resident program, the resident lines
will be replaced by those from exp$.

PROGRAM IN DISK PROGRAM IN RAM MERGED PROGRAM IN RAM

1 10 1
{ 20 20

30 30

40
PROGRAM LINE NUMBERS I 50

60
70

90

7-29

DISK BASIC

MERGE provides a convenient means of putting modular programs
together. For example, an often-used set of BASIC subroutines can
be tacked onto a variety of programs with this command.

For example, suppose the following program is in RAM:

18 REM. .. MRIN PROGRAM

28 GOSUE 1686

38 REM. .. MORE PROGRAM LIMES HERE

999 END

1668 REM. .. HEED TO ADD SUBROUTINES HERE
1816 REM. .. SO USE MERGE COMMAND

1628 PRINT"SUBROUTINE NOT AVRILABLE" :RETURN

And suppose the following program is stored on disk in ASCII format:

1686 REM. . BEGINNING OF SUBROUTINE
1616 PRINT"EXECUTING SUBROUTIMNE. .. "
1626 REM. . . MORE PROGRAM LINES HERE
116@ RETURN

Assuming the subroutine program is named SUB/TXT, then we
could MERGE it with the statement:

MERGE"SUB/TXT"”
and the resultant program in RAM would be:

18 REM. .. MAIN PROGRAM

2@ GOSUB 1606

3@ REM. .. MORE PROGRAM LINES HERE
999 END

16608 REM. .. BEGINNING OF SUBROUTINE
1618 PRINT"EXECUTING SUBROUTINE. .. "
16828 REM. .. MORE PROGRAM LINES HERE
116@ RETURN

Note that MERGE closes all files and clears all variables. Upon
completion, BASIC returns to the command mode.

7-30

DISK BASIC

RUN*“program”
(load and execute a program from disk)

RUN exp$ [,R]

where exp$ defines the filespec for a BASIC program
stored on disk. R leaves open files open

If the R-option is not selected, all open files will be closed.

When the command is executed, any resident BASIC program will
be replaced by the program contained in exp $.

Example:
R Nt =ul ENTE R
Loads and executes the BASIC sector-dump program.

Suppose you save the following program on disk with the name
“PROGI1/BAS":

18 PRINT"PROGL EXECUTING. .. "

28 REUN"PROGZ/BAS"
And save this program on disk with the name “PROG2/BAS" :

168 PRINT"PROGZ EXECUTING. .. "
28 REUN"PROGL/BRS"

Now type:

RUN"FROGL/BAS (RN
and you’ll see a simple example of program chaining.
Hold down the BREAK key to interrupt the program chain.

SAVE (save program onto disk)

SAVE exp$ [,A]

where exp$ defines the file-name and optional
extension, password, and drive to be used.
If the file-name already exists, its previous
contents will be lost as the file is re-created.

A causes the file to be stored in ASCII rather
than compressed-format.

This command lets you save your BASIC programs on disk. You can
save the program in compressed or ASCII format.

7-31

DISK BASIC

Using compressed-format takes up less disk space and is faster during
both SAVEs and LOADs. This is the way BASIC programs are
stored in RAM.

Using the ASCII option makes it possible to do certain things that
cannot be done with compressed-format BASIC files.

Examples:

* The MERGE command requires that the disk file be in
ASCII form.

® You can use the TRSDOS commands LIST and PRINT with

ASCII-format files.

Programs which read in other programs as data will typically

require that the data programs be stored in ASCII.

Useful conventions for placing extensions on BASIC programs:
For compressed-format programs, use the extension /BAS.
For ASCII format programs, use the extension /TXT.

Examples of SAVE command:

SAYE"FILEL/BARS. JOHNGDOE : X"

saves the resident BASIC program in compressed-format with the
file name FILE1, extension /BAS, password .JOHNQDOE; the
file is placed on drive :3.

SAVE"MATHPAKATRT", A
saves the resident program in ASCII form, using the name
MATHPAK/TXT, on the first non write-protected drive.

Upon completion of a SAVE, BASIC returns in the command mode.

7-32

DISK BASIC

File Access

This section is divided into four parts:

1) Creating files and assigning buffers — OPEN and CLOSE
2) Statements and functions

3) Sequential I/O techniques

4) Random I/O techniques.

Creating files and assigning buffers

During the initialization dialog, you type in a number in response to
HOW MANY FILES? The number you type in tells BASIC how
many buffers to create to handle your disk accesses (reads and
writes).

Each buffer is given a number from 1 to 15. If you type:

_

then BASIC sets aside four buffers, numbered 1,2,3 and 4.

You can think of a buffer as a waiting area that data must pass
through on the way to and from the disk file. When you want to
access a particular file, you must tell BASIC which buffer to use
in accessing that file. You must also tell BASIC what kind of
access you want — sequential output, sequential input, or random
input/output.

All this is done with the OPEN statement, and “undone” with the
CLOSE statement.

7-33

DISK BASIC

OPEN
(Assign a buffer to a file and set mode)

OPEN expl$,nmexp,exp2$

where expl$ is a string expression or constant of which
only the first character is significant; this
character specifies the mode in which the
file is to be opened:

expl$= access mode

I sequential input
0] sequential output
R random 1/O

nmexp has a value from 1 to 15, and tells BASIC
which buffer to assign to the file specified
by exp2$

exp2$ defines a TRSDOS file specification

This statement makes it possible to access a file. expl$ determines
what kind of access you’ll have via the specified buffer; nmexp
determines which buffer will be assigned to the file; and exp2$ names
the file to be accessed. If exp2$ does not exist, then TRSDOS may
or may not create it, depending on the access mode.

Note: nmexp (buffer number) cannot exceed the number you
entered for the FILES? question during initialization. If you

entered:
IENTER

then nmexp can have the value 1 or 2.

HOW MANY FILES

Examples of OPEN statements:
166 OPEN "0", 1, "CLIENTLS/TXT"

Opens the file “CLIENTLS/TXT" for sequential output. Buffer 1
will be used. If the file does not exist, it will be created. If it already
exists, then its previous contents are lost. (This is explained under
“Sequential 1/O Techniques”.)

10@ OPEN “1". 4, "PROGL/TRT:1"

Opens the file “PROG1/TXT" on drive 1 for sequential input. Buffer
2 is assigned to the file. If PROG1/TXT does not exist on drive 1, an

error message is returned — since you can’t input from a non-existent
file!

7-34

Out Puf‘
+o DisK

NPT

From DisK

DISK BASIC
.~

188 INPUT"MODE I, 0. FR>"; MODES

118 INPUT"BUFFER NUMBER"; BUFFERZ

1268 INPUT"FILE SFECIFICATION"; FILESPECS
1z@ OPEN MODE$. BUFFERY, FILESPECS

This sequence of statements lets you provide the arguments for the
OPEN statement during program execution. The first character of
MODES sets the access mode, BUFFER% determines which buffer
will be used, and FILESPECS gives the file specification.

OFEN"R". 2, "DRTR/BAS. SFECTHL"

Opens the file DATA/BAS with password SPECIAL, in the random
I/O mode, using buffer number 2. If DATA/BAS does not exist,
it will be created on the first non write-protected drive.

While a file is open, it is referenced by the buffer-number which was
assigned to it. Examples:

GET buffer-number
PUT buffer-number
PRINT #buffer-number
INPUT #buffer-number

All these statements will reference the file which was OPENed via
buffer-number. The mode must be correct.

Once a buffer has been assigned to a file with the OPEN statement,
that buffer cannot be used in another OPEN statement. You have
to CLOSE it first.

More on Buffer Assignments

Two or more buffers may be assigned to the same file for sequential
input (I-mode). However, only one buffer at a time may be assigned
to a file for sequential output (O-mode) or random access R-mode.

For example:

18 OFEN "I", 1, "TEST/THT: 1"
28 OPEN "I". 2, "TEST/TXT:1"

Now TEST/TXT can be accessed via buffers 1 and 2 for sequential
input.

7-35

DISK BASIC

CLOSE (close access to the file)

CLOSE [nmexp [,nmexp ...]]

where nmexp has a value from 1 to 15, and refers to the
file’s buffer-number (assigned when the
file was opened). If nmexp is omitted, all
open files will be closed.

This command terminates access to a file through the specified
buffer(s). If nmexp has not been assigned in a previous OPEN
statement, then

CLOSE nmexp

has no effect.
Examples of CLOSE statements:
CLOSE 1.2, 8

Terminates the file assignments to buffers 1, 2 and 8. These buffers
can now be assigned to other files with OPEN statements.

CLOSE FIRSTA+COUNTY

Terminates the file assignment to the buffer specified by the sum
(FIRST% + COUNT%).

Do not remove a diskette which contains an open file — first close
the file. This is because the last 256 bytes of data may not have
been written to disk yet. Closing the file will write the data, if it
hasn’t already been written.

The following actions and conditions cause all files to be
automatically closed:

NEW

RUN

MERGE filespec

EDITing a file

Adding or deleting program lines
Execution of the CLEAR 7 statement
Disk Errors

7-36

DISK BASIC

INPUT# (sequential read from disk)

INPUT# nmexp, var[var...]

where nmexp specifies a sequential input file
buffer, nmexp=1,2,...,15

var is the variable name to contain
the data from the file

This statement inputs data from a disk file. The data is input
sequentially. That is, when the file is first opened, a pointer is set
to the beginning of the file. Each time data is input, the pointer
advances. To start over reading from the beginning of the file, you
must close the file-buffer and re-open it.

INPUT # doesn’t care how the data was placed on the disk — whether
a single PRINT# statement put it there, or whether it required 10
different PRINT # statements. What matters to INPUT# are the
positions of the terminating characters and the EOF marker.

To INPUT# data successfully from disk, you need to know ahead of
time what the format of the data is. Here is a description of how
INPUT # interprets the various characters it encounters when reading
data.

When inputting data into a variable, BASIC ignores leading blanks;
when the first non-blank character is encountered, BASIC assumes it
has encountered the beginning of the data item.

The data item ends when a terminating character is encountered or
when a terminating condition occurs. The particular terminating
characters vary, depending on whether BASIC is inputting to a
numeric or string variable.

7-37

DISK BASIC
.

Numeric Input

Suppose the data image on disk is
¥1.234p-33pP27p <EN>
<EN> denotes a carriage-return character (ASCII code decimal 13).

Then the statement

INFUT#1, A.E.C
or the sequence of statements

INPUTH#1, A: IHPUTHL B THPUTH#L. C
will assign the values as follows:

A=1.2345
B=-33
Cc=27

This works because blanks and <EN > serve as terminators for
input to numeric variables. The blank before 1.2345 is a “leading
blank”, therefore it is ignored. The blank after 1.2345is a
terminator; therefore BASIC starts inputting the second variable at
the — character, inputs the number —33, and takes the next two
blanks as terminators. The third input begins at the 2 and ends
with the 7.

7-38

DISK BASIC

String Input

When reading data into a string variable, INPUT ignores all leading
blanks; the first non-blank character is taken as the beginning of the
data item.

If this first character is a double-quote (**), then INPUT will evaluate
the data as a quoted string: it will read in all subsequent characters
up to the next double-quote. Commas, blanks, and <EN>
—characters will be included in the string. The quotes themselves

do not become a part of the string.

If the first character of the string item is not a double-quote, then
INPUT will evaluate the data as an unquoted string: It will read in
all subsequent characters up to the first comma, or <EN> .

If double quotes are encountered, they will be included in the string.

For example, if the data on disk is:
PECOS,BTEXAS “GOOD MELONS"
Then the statement
INFUT#1. A%, B$.C$
would assign values as follows:

A$=PECOS
B$=pTEXAS “GOODPMELONS"
C$= null string

If a comma is inserted in the data image before the first double quote,
C$ will get the value, GOOD MELONS.

These are very simple examples just to give you an idea of how
INPUT works. However, there are many other ways to input data —
different terminators, different target variable types, etc.

Rather than taking a shotgun approach and trying to cover them all,
we’ll give a generalized description of how input works and what
the terminating characters and conditions are, and then provide
several examples.

When BASIC encounters a terminating character, it scans ahead to
see how many more terminating characters it can include with the
first terminator. This ensures that BASIC will begin looking for the
next data item at the correct place.

The list below defines the various terminating sets INPUT# will
look for. It will always try to take-in the largest set possible.

7-39

DISK BASIC

Numeric-input terminator sets

end of file encountered

255th data character encountered
, (comma)

<EN>

<EN> <LF>

BB ...1[<EN>]

BB ...11 <EN><LF>]

Quoted-string terminator sets

end of file encountered
255th data character encountered
" (double quote)

U
"[B...][<EN>]
"[B...]1 <EN> <LF>]

Unquoted-string terminator sets

end of file encountered
255th data character encountered

b

<EN> [<LF>]

Here’s a flow chart describing how INPUT # assigns data to a variable:

f START ;

NO
EXAMINE NEXT o oA e EXAMINE NEXT o
| TENR(:::S::EER? TEMPORARY CHARACTER TERMINATOR?
ARACTER
CHARACT! SAVE AREA
YES
PICKUP THE
IGNORE IT TERMINATOR
SET
GET DATA FROM EVALUATE IT ASSIGN TO
TEMPORARY VARIABLE END
SAVE AREA

7-40

DISK BASIC

The following table shows how various data images will be read-in by
the statement:

INPUT#L, AL E. C
Ex.# Image on disk Values assigned
1 $¥123.45% < EN><LF> $¥8.2E4p$H7000<EN > A=12345
B=82000
C=7000
2 BP3<LE><EN> 4 <EN>5 <EN> Al2eof A=34
=5
C=0
3 1,234 <EN> A=1
B=0
Cc=2
4 1,3 end-of-file =1
=2

C=0 end of file error

In Example 2 above, why does variable C get the value 0?7 When the
input reaches the end of file, it terminates the last data item, which
then contains ““A12”. This is evaluated by a routine just like the
BASIC VAL function —which returns a zero since the first character
of ““A12” is non-numeric.

In Exampte 3, when INPUT# goes looking for the second data item,
it immediately encounters a terminator (the comma); therefore
variable B is given the value zero.

The following table shows how various data images on disk will be
read by the statement:

INFPUT#1, A%, BE$
Ex.# Image on disk Values assigned
1 pbhHp“ROBERTS,J.”ROBERTS M.N eof A$=ROBERTS,J.

B$=ROBERTS,M.N.

2 PPPROBERTS,J. pPPROBERTS M.N. <EN> A$=ROBERTS
B$=J.

3 THE WORD “QUO”,12345.789 ~<EN> A$=THE WORD “QUO”
B$=12345.789

4 BYTE<LE> <END> UNIT OF MEMORY eof A$=BYTE<LF> <EN> UNIT OF MEMORY
B$=null (eof error)

7-41

DISK BASIC
e B R —— e

In example 3, the first data item is an unquoted string, therefore the
double-quotes are not terminators, and become part of AS.

In example 4, the <EN> is preceded by an <LF >, therefore it
does not terminate the first string; both <LF> and <EN>
are included in AS.

Technical Note: The above discussion ignores the role of the input
buffer in the sequential input process. Actually, DISK BASIC
always reads in 256-byte data records into the buffer, and then sorts
through what’s in the buffer to “‘satisfy’” the INPUT# variable list.
That’s why

166 INPUTH#1, AX

286 INFUTH#L, B2
do not necessarily require two disk accesses. The 256-byte record
in the buffer can contain enough data for A%, B% and more.

LINE INPUT#
(read a line of text from disk)

LINE INPUT#nmexp,var$
where nmexp specifies a sequential output file buffer,
nmexp=1,2,...,15

var$ is the variable name to contain the string
data

Similar to LINE INPUT from keyboard, this statement reads a
“line” of string data into var$. This is useful when you want to

read an ASCII-format BASIC program file as data, or when you want
to read in data without following the usual restrictions regarding
leading characters and terminators.

LINE INPUT (or LINEINPUT — the space is optional) reads
everything from the first character up to:

1) an <END> character which is not preceded by<LF >

2) the end-of-file

3) the 255th data character (this 255 character is included
in the string)

Other characters encountered — quotes, commas, leading blanks,
<LF> <EN> pairs — are included in the string.

7-42

DISK BASIC

For example, if the data looks like:

10 CLEAR 500 <EN>
20 OPEN “1",1,”PROG” <EN>

then the statement
LINEIHFPUT#1, A$

could be used repetitively to read each program line, one line at a
time.

PRINT# (sequential write to disk file)

PRINT #nmexp,[USING format3;] explp exp ...l

where nmexp specifies a sequential output file buffer,
nmexp=1,2,...,15

format$ is a sequence of field specifiers used with
the USING option

p is a delimiter placed between every two
expressions to be PRINTed to disk; either
a semi-colon or comma can be used
(semi-colon is preferable)

exp is the expression to be evaluated and
written to disk

This statement writes data sequentially to the specified file. When
you first open a file for sequential output, a pointer is set to the
beginning of the file, therefore your first PRINT# places data at

the beginning of the file. At the end of each PRINT# operation, the
pointer advances, so the values are written in sequence.

A PRINT # statement creates a disk image similar to what a PRINT
to display creates on the screen. Remember this, and you’ll be able
to set up your PRINT# list correctly for access by one or more
INPUT statements.

PRINT# does not compress the data before writing it to disk; it
writes an ASCII-coded image of the data.

7-43

DISK BASIC

For example, if A=123.45
PRINT#1. A
will write a nine-byte character sequence onto disk:
$¥123.456 <EN>
The punctuation in the PRINT list is very important. Unquoted

commas and semi-colons have the same effect as they do in regular
PRINT to display statements.

For example, if A=2300 and B=1.303, then

PRINT#1.A. B
places the data on disk as

$B2300pPYIHHBBPEYHA1.303p <EN>
The comma between A and B in the PRINT# list causes 10 extra
spaces in the disk file. Generally you wouldn’t want to use up
disk space this way, so you should use semi-colons instead of
commas.

PRINTH#L. A: B

writes the data as:

2300 1.303 <EN>

PRINT=# with numeric data is quite straightforward — just remember
to separate the items with semi-colons.

PRINT# with string data requires more care, primarily because you
have to insert delimiters so the data can be read back correctly. In
particular, you must separate string items with explicit delimiters
if you want to INPUT# them as distinct strings.
For example, suppose:

A$="JOHN Q. DOE” and B$="100-01-001"
Then:

PRINT#1. A% E$

would produce this image on disk:

7-44

DISK BASIC

JOHN Q. DOE100-01-001 <EN>
which could not be INPUT back into two variables.
The statement:

PRINT#1. A" " E$
would produce:

JOHN Q. DOE, 100-01-001
which could be INPUT# back into two variables.

This method is adequate if the string data contains no delimiters —
commas or <EN> —characters. But if the data does contain
delimiters or leading blanks that you don’t want to ignore, then you
must supply explicit quotes to be written along with the data.
For example, suppose A$=""DOE, JOHN Q.” B$=""100-01-001""
If you use

PRINT#1. A$: ", " B$
the disk image will be:

DOE, JOHN Q.,100-01-001 <EN>

When you try to input this with a statement like

INPUT#HZ, A$. B$

A$ will get the value “DOE”, and B$ will get “JOHN Q.” — because
of the comma after DOE in the disk image.

To write this data so that it can be input correctly, you must use
the CHRS function to insert explicit double quotes into the disk
image. Since 34 is the decimal ASCII code for double quotes, use
CHR$(34) as follows:

PRINT#1, CHR$(34); A%$; CHR$(34); BS
this produces the disk image

“DOE, JOHN Q.”100-01-001 <EN>

which can be read with a simple

INPUT#2, RS, B$

7-45

DISK BASIC

Note: You can also use the CHRS function to insert other delimiters
and control codes into the file, for example:

CHRS$(10) <LF> Line Feed
CHRS(13) carriage return (< EN >character)
CHRS$(11) or CHR$(12) line-printer top-of-form

USING Option

This option makes it easy to write files in a carefully controlled
format. You could create a report file this way, which then could be
LISTed or PRINTed (TRSDOS commands).

Or you could use this option to control how many characters of a
value are written to disk.

For example, suppose:
A$="LUDWIG"
B$=""VAN"
C$="BEETHOVEN"

Then the statement
PRINT#4, USIHG"!. ! X W' A% B 0¥
would write the data in nickname form:
L.V.BEET <EN>

(In this case, we didn’t want to add any explicit delimiters.) See the
PRINT USING description in the LEVEL II BASIC Reference
Manual for a complete explanation of the field-specifiers.

Technical Note: The above discussion ignores the role of the
output buffer in the sequential write process. Actually, the data is
first placed into the buffer, and then, as 256-byte records are filled,
the data is written to the disk file. That’s why there isn’t always a
disk access during execution of each PRINT# statement.

7-46

DISK BASIC

Random Access Statements

FIELD
(organize a random file-buffer into fields)

FIELD nmexp,nmexpl ASvarl§ [,nmexp2 ASvar2$...]

where nmexp specifies a random access file buffer,
nmexp=1,2,...,15
nmexpl specifies the length of the first field,
varl$ defines a variable name for the first field
nmexp2 specifies the length of the second field
var2$ defines a variable name for the second field
subsequent nmexp AS var$ pairs define
other fields in the buffer

Before FIELDing a buffer, you must use an OPEN statement to
assign that buffer to a particular disk file (must use random access
mode). Then use the FIELD statement to organize a random file
buffer so that you can pass data from BASIC to disk storage and
vice-versa.

Each random file buffer has 255 bytes which can store data for
transfer from disk storage to BASIC or from BASIC to disk.
However, you need a way to access this buffer from BASIC so
that you can either read the data it contains or place new data
in it. The FIELD statement provides the means of access.

You may use the FIELD statement any number of times to
“re-organize’ a file buffer. FIELDing a buffer does not clear

the contents of the buffer; only the means of accessing the buffer
(the field names) are changed. Furthermore, two or more field
names can reference the same area of the buffer.

Examples:
FIELD 1, 235 AS A¢

This statement tells BASIC to assign the entire 255-byte buffer to

the string variable A$. If you now print AS$, you will see the contents
of the buffer. Of course, this value would be meaningless unless you
have used GET to read a 255-byte record from disk.

Note: All data — both strings and numbers — must be placed into
the buffer in string form. There are three pairs of functions

(MKI$/CVI,MKS$/CVS,MKD$/CVD) for converting numbers to
strings and vice-versa. See “‘Functions”, below.

7-47

DISK BASIC

FIELD 2. 416 AS NM$. 25 RS AD$, 18 RS CY$, 2 AS STH.7 RS ZF$

The first 16 bytes of buffer 3 are assigned the buffer name NM$; the
next 25, ADS; the next 10, CY$; the next 2, STS$; and the next
7, ZP$. The remaining 195 bytes of the buffer are not fielded at all.

More on field names

Field names, like NM$,ADS$,CY$,STS and ZP$, are not string
variables in the ordinary sense. They do not consume the string
space available to BASIC.

Instead, they point to the buffer field which you assigned with the
FIELD statement. That’s why you can use:

1@8 FIELD 1,235 RS A$

without worrying about whether 255 bytes of string space are
available for AS.

If you use a buffer field name on the left side of an ordinary assignment
statement, that name will no longer point to the buffer field; therefore
you won’t be able to access that field using the previous field name.

For example,
A$=R%
nullifies the effect of the FIELD statement above (line 100).

During random input, the GET statement places data into the
255-byte buffer, where it can be accessed using the field names
assigned to that buffer. During random output, LSET and RSET
place data into the buffer, so you can then PUT the buffer contents
into a disk file.

Often you’ll want to use a dummy variable in a FIELD statement
to “pass over’ a portion of the buffer and start fielding it somewhere
in the middle. For example:

FIELD 4,15 AS CLIENT#${17. 112 AS HIST$CL)
FIELD 1.128 AS DUMMY$, 15 AS CLIENT$(2), 112 AS HISTH(ZD

In the second FIELD statement, DUMMY§ serves to move the starting
position of CLIENTS$(2) to position 129. In this manner, two
identical “‘subrecords” are defined on buffer number 1. We won’t
actually use DUMMY§ to place data into the buffer or retrieve it from
the buffer.

7-48

DISK BASIC

The buffer now “looks” like this:

15 1na I 118 12
cL$ HIST$ X |CLS HISTS
(n () (2) (2)

e DUMMYS8 ————

Note that only one byte (the 128th byte) is left unused in this field
structure.

GET
(read arecord from disk — random access)

GET nmexpl|,nmexp2]

where nmmexpl specifies a random access file buffer,
nmexpl=1,2,...,15
nmexp2 specifies which record to GET in the
file; if omitted, the current record will
be read.

This statement gets a data record from a disk file and places it in the
specified buffer. Before GETting data from a file, you must open
the file and assign a buffer to it. That is, a statement like:

OPEN ““R",nmexpl,filespec
is required before the statement:

GET nmexpl,nmexp2

When BASIC encounters the GET statement, it looks at the buffer’s
control block, and obtains:

the information needed to access the file

the mode in which this buffer was set up (must be R)
the current record number

The EOF (end-of-file) record number, i.e., the highest
numbered record in the file

e lots of other information for internal use

BASIC then reads record nmexp2 from the file and places it into the
buffer. If you omit the record number, it will read the current record.

The ““current record” is the record whose number is one higher than

that of the last record accessed. The first time you access a file via

a particular buffer, the current record is set equal to 1.
.|

7-49

DISK BASIC

For example:

Program statement Effect

1000 OPEN"'R"",1,"NAME/BAS"” Open NAME/BAS for random
access using buffer 1

1010 FIELD 1, ... Structure buffer

1020 GET 1 GET record 1 into buffer 1
1025 REM. .. ACCESS BUFFER

1030 GET 1,30 GET record 30 into buffer 1
1035 REM ... ACCESS BUFFER

1040 GET 1,25 GET record 25 into buffer 1
1046 REM ... ACCESS BUFFER

1050 GET 1 GET record 26 into buffer 1

If you attempt to GET a record whose number is higher than that
of the end-of-file record, BASIC will fill the buffer with hex zeroes,
and no error will occur.

To prevent this from occurring, you can use the LOF function to
determine the number of the highest numbered record.

PUT
(write a record to disk — random access)

PUT nmexpl|,nmexp2]

where nmexpl specifies a random access file buffer,
nmexp=1,2,...,15

nmexp2 specifies the record number in the file,
nmexp2=1,2,.., up to 335, depending
on how much space is available on the
disk; if nmexp2 is omitted, the current
record number is assumed.

This statement moves data from a file’s buffer into a specified place
in the file. Before PUTing data in a file, you must:
1) OPEN the file, thereby assigning a buffer and defining the
access mode (must be R);
2) FIELD the buffer, so you can
3) place data into the buffer with LSET and RSET statements.

7-50

DISK BASIC
S e S TN

When BASIC encounters the statement:
PUT nmexp ,nmexp?2
it does the following:

Gets the information needed to access the disk file
Checks the access mode for this buffer (must be R)
Acquires more disk space for the file if necessary to
accommodate the record indicated by nmexp?2

. Copies the buffer contents into the specified record of the
disk file

. Updates the current record number to equal nmexp2+1

The ““‘current record” is the record whose number is one higher than
the last record accessed. The first time you access a file via a
particular buffer, the current record is set equal to 1.

If the record number you PUT is higher than the end-of-file record
number, then nmexp2 becomes the new end-of-file record number.

This has an important implication. When you PUT a record whose
number exceeds the EOF record number, space is allocated on the
disk to accommodate the new highest record number plus all
lower-numbered records. For example,

PUT nmexp,336
will always produce a DISK FULL message, since TRSDOS attempts

to find space for all records from 1 to 336 — and 335 is the maximum
number of records available on a diskette.

7-51

DISK BASIC

Examples (assume a file named SAMPLE/BAS exists and that you
have previously written 10 records to it, so that LOF=10):

Program statement Effect

1000 OPEN"R",1,”SAMPLE/BAS" Open SAMPLE/BAS for random
address under buffer 1

1010 FIELD 1,...... Prepare buffer

1020 LSET Place data in buffer

1030 PUT 1 Copy buffer contents into
current record (=#1)

1035 LSET Place data in buffer

1040 PUT 1,30 Acquire disk space for records

2 through 30 and copy
buffer contents into record
30;set LOF=30

1045 LSET Place data in buffer

1050 PUT 1,25 Copy buffer contents into
record 25

1055 LSET Place data in buffer

1060 PUT 1 Copy buffer contents into

current record (=#26)

7-52

DISK BASIC

LSET and RSET
(place data in a random buffer field)

LSET var$ = exp$ and RSET var$ = exp$

where par$ is a field name

exp$ contains the data to be placed in the buffer
field named by var$

These two statements let you place character-string data into fields
previously set up by a FIELD statement.

For example, suppose NM§ and AD$ have been defined as field
names for a random file buffer. NMS$ has a length of 18 characters,
and ADS$ has a length of 25 characters.

Now we want to place the following information into the buffer
fields so it can be written to disk:

name: JIM CRICKET, JR.
address: 2000 EAST PECAN ST.

This is accomplished with the two statements:

LSET HM$="JIM CRICKET, JR. "
LSET RD$="268@ EAST PECAN ST. "

This puts the data in the buffer as follows:

| IMPCRICKET,JR.Bb} | | 2000pEASTBPECANBST.BBYIBY |

NMS$ AD$S
Note that filler spaces were placed to the right of the data strings
in both cases. If we had used RSET instead of LSET statements, the
filler spaces would have been placed on the left. This is the only
difference between LSET and RSET.

For example:

RSET HM$="JIM CRICKET, JE. "
RSET AD$="2@@8 EAST PECAN ST. "

places data in the fields as follows:

[BBYJIMBCRICKET,JR. | | BBBBYY2000BEASTHPECANYST. |
NMS ADS

7-53

DISK BASIC

If a string item is too large to fit in the specified buffer field, it is
always truncated on the right. That is, the extra characters on the

right are ignored.

CVD, CVIand CVS
(restore string to numeric form)

CVD(exp$)

where exp$

CVI(exp$)

where exp$

CVS(exp3)

where exp$

defines an eight character string; exp$ is
typically the name of a buffer-field

containing a numeric string. If LEN(exp$)<38,
an ILLEGAL FUNCTION CALL error occurs;
if LEN(exp$)>8, only the first eight characters
are used.

defines a two-character string; exp§ is
typically the name of a buffer-field

containing a numeric string. If LEN(exp$)<2,
an ILLEGAL FUNCTION CALL error occurs;
if LEN(exp3$)>2, only the first two characters
are used.

defines a four-character string; exp$ is
typically the name of a buffer-field
containing a numeric string. If
LEN(exp$)<4, an ILLEGAL FUNCTION
CALL error occurs; if LEN(exp$)>4,
only the first four characters are used.

These functions let you restore data to numeric form after it is read
from disk. Typically the data has been read by a GET statement, and
is stored in a random access file buffer.

The functions CVD, CVI, CVS are inverses of MKD$, MKIS$, and

MKSS$, respectively.

For example, suppose the name GROSSPAYS$ references an eight-
byte field in a random-access file buffer, and after GETting a record,
GROSSPAY§$ contains a MKDS$ representation of the number

13123.38.

7-54

DISK BASIC

Then the statement:

PRINT CYD(GROSSPAY$)-TAXES

prints the result of the difference, 13123.38—TAXES. Whereas the
statement:

PRINT GROSSPAY$-THXES

will produce a TYPE MISMATCH error, since string values cannot be
used in arithmetic expressions.

Using the same example, the statement
A#=CYD(GROSSPAYS)

assigns the numeric value 13123.38 to the double-precision variable
A#.

EOF (end-of-file detector)

EOF (nmexp)

where nmexp specifies a file buffer,
nmexp=1,2,...,15

This function checks to see whether all characters up to the end-of-
file marker have been accessed, so you can avoid INPUT PAST END
errors during sequential input.

Assuming nmexp specifies an open file, then EOF(nmexp) returns
0 (false) when the EOF record has not yet been read, and —1 (true)
when it has been read.

Examples:

IF EOF¢S) THEN PRINTEND OF FILE"FILENM$
IF EOFC(NMZ)> THEN CLOSE NMZ

7-55

DISK BASIC
e e

The following sequence of lines reads numeric data from DATA/TXT
into the array A(). When the last data character in the file is read,
the EOF test in line 30 ““passes”, so the program branches out of the
disk access loop, preventing an INPUT PAST END error from
occurring. Also note that the variable I contains the number of
elements input into array A().

3 DIM AC1E@E> “RSSUMING THIS IS A SAFE WALUE

1@ OPEN "I", 1, "DATAATAT®

28 TE=@

23 IF EOFC4> THEN 7@

48 INPUTH#L, ACTED

S8 IX=1n+1

&8 GOTO Z@

78 REM PROGRAM COMTINUES HERE AFTER DISK INFUT

LOF (get end-of-file record number)

LOF(nmexp)

where nmexp specifies a random access buffer
nmexp=1,2,...,15

This function tells you the number of the last, i.e., highest numbered,
record in a file. It is useful for both sequential and random access.

For example, during random access to a pre-existing file, you often
need a way to know when you’ve read the last valid record. LOF
provides a way.

Examples:

18 OPEN "R, 4, "UNKHOWNATAT"
&8 FIELD 4,255 AS A%

38 FORIX=1 TO LOF(4d

48 GET 1. IX

58 PRINT A$

&8 NEAT

In line 30, LOF(1) specifies the highest record number to be accessed.

Note: If you attempt to GET record numbers beyond the end-of-file
record, BASIC simply fills the buffer with hexadecimal zeroes, and
no error is generated.

When you want to add to the end of a file, LOF tells you where to
start adding:

188 IX=LOF<1>+1 “HIGHEST EXISTING RECORD

118 PUT 1. 1% “ADD NEXT RECORD

7-56

DISK BASIC

MKD$, MKI$ and MKS$
(convert data, numeric-to-string)

MKD$(nmexp)
where nmexp is evaluated as a double-precision number
MKI$(nmexp)

where nmexp is evaluated as an integer,
—32768< =nmexp <32768;if nmexp exceeds
this range, an ILLEGAL FUNCTION CALL
error occurs; any fractional component in
nmexp is truncated

MKS$(nmexp)

where nmexp is evaluated as a single-precision number

These functions change a number to a ‘“‘string”. Actually the byte
values which make up the number are not changed; only one byte,
the internal data-type specifier, is changed, so that numeric data can
be placed in a string variable. (See LEVEL II Reference Manual,
VARPTR Function, for details of internal number representation.)

That is:

MKDS$ returns an eight-byte string
MKIS$ returns a two-byte string
MKSS$ returns a four-byte string

Examples:

ASC(MKIS$(1%)) equals the Isb of 1%, i.e., (1% AND 255)
ASC(RIGHT$(MKI$(I),1))=the msb of 1%, i.e., INT(1%/256)

LSET AVG$=MKS$(0.123)

AVGS$ would typically reference a four-byte random buffer field.
Now it contains a representation of the single-precision number
0.123.

7-57

DISK BASIC

LSET TALLY$=MKI${1X%)

Field name TALLY$ would now contain a two-byte representation
of the integer 1%.

AF=MKI$(2/12

AS$ becomes a two-byte representation of the integer portion of 8/1.
Any fractional portion is ignored. Note that A$ in this case is a
normal string variable, not a buffer-field name.

Suppose BASEBALL/BAT (a non-standard file extension) has been
opened for random access using buffer 2, and the buffer has been
FIELDed as follows:

field: NM$ YRS$S AVGS HR§ AB§ ERNINGS
length: 16 2 4 2 4 4

NMS is intended to hold a character string; AVGS, ABS and
ERNINGS, converted single-precision values; YRS and HRS,
converted integers.

Suppose we want to write the following data record:

SLOW LEARNER played 38 years ; lifetime batting average .123;
career homeruns, 11; at bats, 32768; ..., earnings —13.75.

Then we’d use the make-string functions as follows:

166@ LSET NM$="SLOW LERRNER"
laia LSET YRS$=MKI$(Z8)

18268 LSET AVGE=MKS$C 1230
1828 LSET HR$=MKI$(11

1843 LSET AB$=MKS$(Z2768)
1858 LSET ERNING$=MKS$(-1Z 750

After this sequence, you can write SLOW LEARNER’s information
to disk with the PUT statement. When you read it back from disk
with GET, you will need to restore the numeric data from string

to numeric form, using CVI and CVS functions.

7-58

DISK BASIC

Sequential A ccess Techniques

Sequential input/output is the simplest way to store data in disk
files and retrieve it into BASIC variables.

To write to disk, you open a file for sequential output, PRINT# the
data, and close the file. To read the data back, you simply open
the file for sequential access and INPUT# the data directly into
BASIC variables — in the same order as the data was written onto
the disk.

Sequential Output — An Example

Suppose we want to store a table of English-to-metric conversion

constants:

English unit Metric equivalent

1 inch 2.54001 centimeters
1 mile 1.60935 kilometers
1 acre 4046.86 sq. meters

1 cubic inch 0.01638716 liter

1 U.S. gallon 3.785 liters

1 liquid quart 0.9463 liter

1 1b (avoir) 0.45359 kilogram

First we decide what the data image is going to be. Let’s say we want
it to look like this:

english unit—>metric unit, factor <EN>
For example, the stored data would start out:
IN=->CM,$2.54001 <EN>

The following program will create such a data file.

Note: <EN> represents a carriage return, hex OD.

7-59

DISK BASIC
L]

168 OPEN"O", 1, "METRIC/TAT"
28 FORI®=1 TO 7
38 READ UNITH#. FRACTR

=

4@ PRINT#1, UNITS: ", ": FRCTR

98 NERT

&8 CLOSE

78 DATA IN-2CH, 2. 54681, MI-2KM, 1. 68935, ACRE->S0. M. 4846, 26
@ DATA CU. IN->LTR, 1. 638716E-2, GAL->LTR, . 785

98 DHTA LIG GT->LTR, @ 9463, LB-2KG. . 45359

Line 10 creates a disk file named METRIC/TXT, and assigns buffer 1
for sequential output to that file. The extension /TXT is used because
sequential output always stores the data as ASClI-coded text.

Note: If METRIC/TXT already exists, line 10 will cause all its data
to be lost. Here’s why: Whenever a file is opened for sequential
output, the EOF marker is set to the beginning of the file. In effect,
TRSDOS “forgets” that anything has ever been written beyond

this point.

Line 40 prints the current contents of UNIT$ and FACTR to the file
buffer. The disk-write won’t actually take place until the buffer is
filled or you close the file, whichever happens first. Since the string
items do not contain delimiters, it is not necessary to print explicit
quotes around them. The explicit comma is sufficient.

Line 60 closes the file. The EOF marker points to the end of the last

data item, i.e., 0.45359, so that later, during input, DISK BASIC will
know when it has read all the data.

7-60

DISK BASIC

Sequential Input — An Example

The following program reads the data from METRIC/TXT into two
“parallel” arrays, then asks you to enter a conversion problem.

CLEAR S@@

18 DIM UNITS$C90, FRCTROSY “ALLOWS FOR UFP TO 16 DATA PRIRS
OFEN"I". 1, "METRICATAT"

Ti=0

IF EQF{1) THEH 7@

THPUTHL, UNITHCIX, FACTROTR

Tr=1x+1

GOTO z@

78 REM. .. THE CONVERSION FRCTORS HRVE BEEN RERD IN

188 CLS: PRINT TABCS) "ss4 ENGLISH TO METRIC CONMERSIONS sdor®
118 FOR ITEMZ=BTOIX-1

128 FRINT USING"(#4 “ A" TTEME, UNIT$CITEMED
128 NEXT

148 PRINTE?04, "WHICH CONVERSION “;

158 IHPUT CHOICEX

1535 PRINTE?YEE, "ENTER ENGLISH QURNTITYY:

1e@ INFUT V

178 PRINT"THE METRIC EQUIYALENT IS"V#FACTRCCHOICERD

188 THPUT"PRESS ENTER TO CONTIMUE®: X

198 PRINTEVG4, CHR$(Z1y; “CLERR TO END OF FRAME

286 GOTO 148

1.0 B2 pa il
sEsanREd

Ty Lh

Line 20 opens the file for sequential input. The read pointer is
automatically set to the beginning of the file.

Line 30 checks to see that the end-of-file record hasn’t been read.
If it has, control branches from the disk input loop to the part of the
program that uses the newly acquired data.

Line 40 reads a value into the string array UNIT$(), and a number into
the single-precision array FACTR(). Note that this INPUT list
parallels the PRINT # list that created the data file (see the section
“Sequential Output: An example’). This parallelism is not required,
however. We could just as successfully have used:

4@ INPUTHL, UNIT$(IX) : INPUTH#L, FRCTROTZD

7-61

DISK BASIC

How to update a file

Suppose you want to add more entries into the English-Metric
conversion file. You can’t simply re-open the file for sequential
output and PRINT# the extra data — that would immediately set
the end-of-file marker to the beginning of the file, effectively
destroying the file’s previous contents. Do this instead:

1) Open the file for sequential input

2) Input the entire file and store it
(typically in one or more arrays)

3) Close the file

4). Add your new entries to the data array, or correct
existing entries

S) Re-open the file for sequential output

6) Output the updated data array to the file

7) Close the file

If the file is too large to fit in memory, update it this way:

1) Open the file for sequential input

2) Open another new data file for sequential output

3) Input a block of data and update the data as necessary

4) Output the data to the new file

5) Repeat steps 3 and 4 until all data has been read,
updated, and output to the new file; then go to
step 6

6) Close both files

7) Kill the old data file

8) Rename the new file (TRSDOS RENAME command)
to the name of the old file.

7-62

DISK BASIC

Sequential LINE INPUT - An Example

Using the line-oriented input, you can write programs that edit other
BASIC program files : renumber them, change LPRINTSs to PRINTs,
etc. — as long as these “‘target” programs are stored in ASCII format.

The following program counts the number of lines in any disk file
with the extension “‘/TXT".

1@ CLERR za@

28 INPUT "WHAT IS THE MNAME OF THE PROGRARM": PROGE

38 IF INSTR(PROGE, "/TXT"3=6 THEN 118 “REGUIRE /TAT EXTENSION
46 OPEN"IY, 1, PROGE

58 IX=a

cd IF EOFCLMTHEN 96

78 Té=IK+1: LINE INFUT#1. TEMP$

88 GOTOGE

98 PRINT"THE FROGRAM IS"IX'LINES LONG. "

188 CLOSE: GOTOZG

116 PRINT "FILESPEC MUST INCLUDE THE EXTENSION “/TAT "
128 GOTOzZE

For BASIC programs stored in ASCII, each program line ends with
an <EN > character not preceded by an <LF > line feed.

So the LINE INPUT in line 70 automatically reads one entire line at
a time, into the variable TEMPS. Variable 1% actually does the
counting.

To try out the program, save DISKDUMP/BAS as a text file:

LOAD"DISKDUMP/BRS "
SAYE"DISKDUMP/TXT", A

This gives you a second, ASCII-format version of DISKDUMP.

Now type in the line-counter program and tell it to examine the
program DISKDUMP/TXT.

7-63

DISK BASIC

Disk Storage during Sequential A ccess

One thing that makes sequential access so simple is that you can
generally ignore the details of disk storage. You just write your data
and read it back.

Described below are a few of the technical details and hints you
should keep in the back of your mind. In some situations, they will
become important.

1.

7-64

PRINT# statements don’t write data directly to the disk;
instead, the data is placed in the 256-byte output buffer.
When this buffer is filled, the contents are automatically
written to disk. (Closing the file will also write the buffer
to disk.)

If a DISK FULL ERROR occurs during execution of a PRINT #
statement, you should realize that the current contents of the
output buffer have not been written to the file. The data in

the disk file is intact, but it doesn’t contain the last few values
you PRINTed to it.

If your variables still contain the data, you can recover it
directly.

DISK BASIC

Random A ccess Techniques

Random access offers several advantages over sequential access:

e Instead of having to start reading at the beginning of a file,
you can read any record you specify.

° To update a file, you don’t have to read in the entire file,
update the data, and write it out again. You can rewrite or
add to any record you choose, without having to go through
any of the other records.

. Random access is more efficient — data takes up less space and
is read and written faster.

e Opening a file for random access allows you to write to and
read from the file via the same buffer.

o Random access provides many powerful statements and
functions to structure your data. Once you have set up the
structure, random input/output becomes quite simple.

The last advantage listed above is also the “‘hard part” of random
access. It takes a little extra thought.

For the purposes of random access, you can think of a disk file as a
set of boxes — like a wall of post-office boxes. Just like the post
office receptacles, the file boxes are numbered.

The number of boxes in a file will vary, but it’s always a multiple
of 5.

The smallest non-empty file contains 5 boxes, numbered 1 through
5. When the file needs more space to hold more data, TRSDOS
provides it in increments of 5.

These fixed-sized boxes are referred to as “records”. Each record
contains 256 bytes, 255 of which are available for storing your data.

You can place data in any record, or read the contents of any
record, with statements like:

Ut 1.5 write buffer-1 contents to record 5
ET 1.5 read the contents of record 5 into buffer-1

Gy

7-65

DISK BASIC

‘“PUT1,5" 256)
BYTES
“GET 1,5" _;; #2

RECORDS IN DISK FILE 1/0 BUFFERS IN RAM

The buffer is a waiting area for the data. Before writing data to a file,
you must place it in the buffer assigned to the file. After reading
data from a file, you must retrieve it from the buffer.

As you can see from the sample PUT and GET statements above, data
is passed to and from the disk in 256-byte chunks.

“That’s a lot of data.” But most values occupy only a few bytes:

Integers 2
Single-precision numbers 4
Double precision numbers 8
Strings Up to 255

Therefore you’ll want to place several values into the buffer before
PUTting its contents into the disk file, to avoid wasting disk space.

This is accomplished by 1) dividing the buffer up into fields and
naming them, then 2) placing the string or numeric data into the
fields.

For example, suppose we want to store a glossary on disk. Each
record will consist of a word followed by its definition. We start
with:

168 OPEN"R", 1, "GLOSSHRY/BRS"
118 FIELD 41.45 RS WD$. 248 AS MEANINGS

Line 100 opens a file named GLOSSARY/BAS (creates it if it doesn’t
already exist); and gives buffer 1 random access to the file.

Line 110 defines two fields onto buffer 1:
WD$ consists of the first 15 bytes of the buffer;
MEANINGS consists of the last 240 bytes.

WD$ and MEANINGS are now field-names.

7-66

DISK BASIC

What makes field names different? Most string variables point to an
area in memory called the string space. This is where the value of
the string is stored.

Field names, on the other hand, point to the buffer area assigned
in the FIELD statement. So, for example, the statement:

16 PRINT WD$ “: " MEANINGS
displays the contents of the two buffer fields defined above.

These values are meaningless unless we first place data in the buffer.
LSET, RSET and GET can all be used to accomplish this function.
We’ll start with LSET and RSET, which are used in preparation

for disk output.

Our first entry is the word ““left-justify” followed by its definition.

188 OPEN"R". 1. "GLOSSARY/BRS"

116 FIELD 1,15 AS WD¥. 248 AS MEANINGS

120 L5ET WD$="LEFT-JUSTIFY"

126 LSET MEANING$="TO PLACE A VALUE IN A FIELD FROM LEFT

TO RIGHT:; IF THE DATA DOESN'T FILL THE FIELD. BLANKS ARE ADDED
ON THE RIGHT: IF THE DATA IS TOO LONG: THE EXTRA CHARACTERS ON

THE RIGHT ARE IGNORED. LSET IS A LEFT-JUSTIFY FUNCTION. "

Line 120 left-justifies the value in quotes into the first field in buffer
1. Line 130 does the same thing to its quoted string. When typing
in line 130, you should insert line-feed <LF > characters (press the
down arrow) to force line breaks as above. This makes it easier

to print out the data after reading it back in to a string variable.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>